/*
__ _____ _____ _____
__ | | __ | | | | JSON for Modern C + +
| | | __ | | | | | | version 2.1 .1
| _____ | _____ | _____ | _ | ___ | https : //github.com/nlohmann/json
Licensed under the MIT License < http : //opensource.org/licenses/MIT>.
Copyright ( c ) 2013 - 2017 Niels Lohmann < http : //nlohmann.me>.
Permission is hereby granted , free of charge , to any person obtaining a copy
of this software and associated documentation files ( the " Software " ) , to deal
in the Software without restriction , including without limitation the rights
to use , copy , modify , merge , publish , distribute , sublicense , and / or sell
copies of the Software , and to permit persons to whom the Software is
furnished to do so , subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software .
THE SOFTWARE IS PROVIDED " AS IS " , WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT . IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE .
*/
# ifndef NLOHMANN_JSON_HPP
# define NLOHMANN_JSON_HPP
# include <algorithm> // all_of, copy, fill, find, for_each, none_of, remove, reverse, transform
# include <array> // array
# include <cassert> // assert
# include <ciso646> // and, not, or
# include <clocale> // lconv, localeconv
# include <cmath> // isfinite, labs, ldexp, signbit
# include <cstddef> // nullptr_t, ptrdiff_t, size_t
# include <cstdint> // int64_t, uint64_t
# include <cstdlib> // abort, strtod, strtof, strtold, strtoul, strtoll, strtoull
# include <cstring> // memcpy, strlen
# include <forward_list> // forward_list
# include <functional> // function, hash, less
# include <initializer_list> // initializer_list
# include <iomanip> // hex
# include <iostream> // istream, ostream
# include <iterator> // advance, begin, back_inserter, bidirectional_iterator_tag, distance, end, inserter, iterator, iterator_traits, next, random_access_iterator_tag, reverse_iterator
# include <limits> // numeric_limits
# include <locale> // locale
# include <map> // map
# include <memory> // addressof, allocator, allocator_traits, unique_ptr
# include <numeric> // accumulate
# include <sstream> // stringstream
# include <string> // getline, stoi, string, to_string
# include <type_traits> // add_pointer, conditional, decay, enable_if, false_type, integral_constant, is_arithmetic, is_base_of, is_const, is_constructible, is_convertible, is_default_constructible, is_enum, is_floating_point, is_integral, is_nothrow_move_assignable, is_nothrow_move_constructible, is_pointer, is_reference, is_same, is_scalar, is_signed, remove_const, remove_cv, remove_pointer, remove_reference, true_type, underlying_type
# include <utility> // declval, forward, make_pair, move, pair, swap
# include <vector> // vector
// exclude unsupported compilers
# if defined(__clang__)
# if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
# error "unsupported Clang version - see https: //github.com/nlohmann/json#supported-compilers"
# endif
# elif defined(__GNUC__)
# if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40900
# error "unsupported GCC version - see https: //github.com/nlohmann/json#supported-compilers"
# endif
# endif
// disable float-equal warnings on GCC/clang
# if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wfloat-equal"
# endif
// disable documentation warnings on clang
# if defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdocumentation"
# endif
// allow for portable deprecation warnings
# if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
# define JSON_DEPRECATED __attribute__((deprecated))
# elif defined(_MSC_VER)
# define JSON_DEPRECATED __declspec(deprecated)
# else
# define JSON_DEPRECATED
# endif
// allow to disable exceptions
# if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && not defined(JSON_NOEXCEPTION)
# define JSON_THROW(exception) throw exception
# define JSON_TRY try
# define JSON_CATCH(exception) catch(exception)
# else
# define JSON_THROW(exception) std::abort()
# define JSON_TRY if(true)
# define JSON_CATCH(exception) if(false)
# endif
// manual branch prediction
# if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
# define JSON_LIKELY(x) __builtin_expect(!!(x), 1)
# define JSON_UNLIKELY(x) __builtin_expect(!!(x), 0)
# else
# define JSON_LIKELY(x) x
# define JSON_UNLIKELY(x) x
# endif
/*!
@ brief namespace for Niels Lohmann
@ see https : //github.com/nlohmann
@ since version 1.0 .0
*/
namespace nlohmann
{
/*!
@ brief unnamed namespace with internal helper functions
This namespace collects some functions that could not be defined inside the
@ ref basic_json class .
@ since version 2.1 .0
*/
namespace detail
{
////////////////
// exceptions //
////////////////
/*!
@ brief general exception of the @ ref basic_json class
Extension of std : : exception objects with a member @ a id for exception ids .
@ note To have nothrow - copy - constructible exceptions , we internally use
std : : runtime_error which can cope with arbitrary - length error messages .
Intermediate strings are built with static functions and then passed to
the actual constructor .
@ since version 3.0 .0
*/
class exception : public std : : exception
{
public :
/// returns the explanatory string
virtual const char * what ( ) const noexcept override
{
return m . what ( ) ;
}
/// the id of the exception
const int id ;
protected :
exception ( int id_ , const char * what_arg )
: id ( id_ ) , m ( what_arg )
{ }
static std : : string name ( const std : : string & ename , int id )
{
return " [json.exception. " + ename + " . " + std : : to_string ( id ) + " ] " ;
}
private :
/// an exception object as storage for error messages
std : : runtime_error m ;
} ;
/*!
@ brief exception indicating a parse error
This excpetion is thrown by the library when a parse error occurs . Parse
errors can occur during the deserialization of JSON text as well as when
using JSON Patch .
Member @ a byte holds the byte index of the last read character in the input
file .
@ note For an input with n bytes , 1 is the index of the first character
and n + 1 is the index of the terminating null byte or the end of
file . This also holds true when reading a byte vector ( CBOR or
MessagePack ) .
Exceptions have ids 1 xx .
name / id | example massage | description
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - -
json . exception . parse_error .101 | parse error at 2 : unexpected end of input ; expected string literal | This error indicates a syntax error while deserializing a JSON text . The error message describes that an unexpected token ( character ) was encountered , and the member @ a byte indicates the error position .
json . exception . parse_error .102 | parse error at 14 : missing or wrong low surrogate | JSON uses the ` \ uxxxx ` format to describe Unicode characters . Code points above above 0xFFFF are split into two ` \ uxxxx ` entries ( " surrogate pairs " ) . This error indicates that the surrogate pair is incomplete or contains an invalid code point .
json . exception . parse_error .103 | parse error : code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF . Code points above 0x10FFFF are invalid .
json . exception . parse_error .104 | parse error : JSON patch must be an array of objects | [ RFC 6902 ] ( https : //tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
json . exception . parse_error .105 | parse error : operation must have string member ' op ' | An operation of a JSON Patch document must contain exactly one " op " member , whose value indicates the operation to perform . Its value must be one of " add " , " remove " , " replace " , " move " , " copy " , or " test " ; other values are errors .
json . exception . parse_error .106 | parse error : array index ' 01 ' must not begin with ' 0 ' | An array index in a JSON Pointer ( [ RFC 6901 ] ( https : //tools.ietf.org/html/rfc6901)) may be `0` or any number wihtout a leading `0`.
json . exception . parse_error .107 | parse error : JSON pointer must be empty or begin with ' / ' - was : ' foo ' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens , each prefixed by a ` / ` character .
json . exception . parse_error .108 | parse error : escape character ' ~ ' must be followed with ' 0 ' or ' 1 ' | In a JSON Pointer , only ` ~ 0 ` and ` ~ 1 ` are valid escape sequences .
json . exception . parse_error .109 | parse error : array index ' one ' is not a number | A JSON Pointer array index must be a number .
json . exception . parse_error .110 | parse error at 1 : cannot read 2 bytes from vector | When parsing CBOR or MessagePack , the byte vector ends before the complete value has been read .
json . exception . parse_error .111 | parse error : bad input stream | Parsing CBOR or MessagePack from an input stream where the [ ` badbit ` or ` failbit ` ] ( http : //en.cppreference.com/w/cpp/io/ios_base/iostate) is set.
json . exception . parse_error .112 | parse error at 1 : error reading CBOR ; last byte : 0xf8 | Not all types of CBOR or MessagePack are supported . This exception occurs if an unsupported byte was read .
json . exception . parse_error .113 | parse error at 2 : expected a CBOR string ; last byte : 0x98 | While parsing a map key , a value that is not a string has been read .
@ since version 3.0 .0
*/
class parse_error : public exception
{
public :
/*!
@ brief create a parse error exception
@ param [ in ] id the id of the exception
@ param [ in ] byte_ the byte index where the error occured ( or 0 if
the position cannot be determined )
@ param [ in ] what_arg the explanatory string
@ return parse_error object
*/
static parse_error create ( int id , size_t byte_ , const std : : string & what_arg )
{
std : : string w = exception : : name ( " parse_error " , id ) + " parse error " +
( byte_ ! = 0 ? ( " at " + std : : to_string ( byte_ ) ) : " " ) +
" : " + what_arg ;
return parse_error ( id , byte_ , w . c_str ( ) ) ;
}
/*!
@ brief byte index of the parse error
The byte index of the last read character in the input file .
@ note For an input with n bytes , 1 is the index of the first character
and n + 1 is the index of the terminating null byte or the end of
file . This also holds true when reading a byte vector ( CBOR or
MessagePack ) .
*/
const size_t byte ;
private :
parse_error ( int id_ , size_t byte_ , const char * what_arg )
: exception ( id_ , what_arg ) , byte ( byte_ )
{ }
} ;
/*!
@ brief exception indicating errors with iterators
Exceptions have ids 2 xx .
name / id | example massage | description
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - -
json . exception . invalid_iterator .201 | iterators are not compatible | The iterators passed to constructor @ ref basic_json ( InputIT first , InputIT last ) are not compatible , meaning they do not belong to the same container . Therefore , the range ( @ a first , @ a last ) is invalid .
json . exception . invalid_iterator .202 | iterator does not fit current value | In an erase or insert function , the passed iterator @ a pos does not belong to the JSON value for which the function was called . It hence does not define a valid position for the deletion / insertion .
json . exception . invalid_iterator .203 | iterators do not fit current value | Either iterator passed to function @ ref erase ( IteratorType first , IteratorType last ) does not belong to the JSON value from which values shall be erased . It hence does not define a valid range to delete values from .
json . exception . invalid_iterator .204 | iterators out of range | When an iterator range for a primitive type ( number , boolean , or string ) is passed to a constructor or an erase function , this range has to be exactly ( @ ref begin ( ) , @ ref end ( ) ) , because this is the only way the single stored value is expressed . All other ranges are invalid .
json . exception . invalid_iterator .205 | iterator out of range | When an iterator for a primitive type ( number , boolean , or string ) is passed to an erase function , the iterator has to be the @ ref begin ( ) iterator , because it is the only way to address the stored value . All other iterators are invalid .
json . exception . invalid_iterator .206 | cannot construct with iterators from null | The iterators passed to constructor @ ref basic_json ( InputIT first , InputIT last ) belong to a JSON null value and hence to not define a valid range .
json . exception . invalid_iterator .207 | cannot use key ( ) for non - object iterators | The key ( ) member function can only be used on iterators belonging to a JSON object , because other types do not have a concept of a key .
json . exception . invalid_iterator .208 | cannot use operator [ ] for object iterators | The operator [ ] to specify a concrete offset cannot be used on iterators belonging to a JSON object , because JSON objects are unordered .
json . exception . invalid_iterator .209 | cannot use offsets with object iterators | The offset operators ( + , - , + = , - = ) cannot be used on iterators belonging to a JSON object , because JSON objects are unordered .
json . exception . invalid_iterator .210 | iterators do not fit | The iterator range passed to the insert function are not compatible , meaning they do not belong to the same container . Therefore , the range ( @ a first , @ a last ) is invalid .
json . exception . invalid_iterator .211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to .
json . exception . invalid_iterator .212 | cannot compare iterators of different containers | When two iterators are compared , they must belong to the same container .
json . exception . invalid_iterator .213 | cannot compare order of object iterators | The order of object iterators cannot be compated , because JSON objects are unordered .
json . exception . invalid_iterator .214 | cannot get value | Cannot get value for iterator : Either the iterator belongs to a null value or it is an iterator to a primitive type ( number , boolean , or string ) , but the iterator is different to @ ref begin ( ) .
@ since version 3.0 .0
*/
class invalid_iterator : public exception
{
public :
static invalid_iterator create ( int id , const std : : string & what_arg )
{
std : : string w = exception : : name ( " invalid_iterator " , id ) + what_arg ;
return invalid_iterator ( id , w . c_str ( ) ) ;
}
private :
invalid_iterator ( int id_ , const char * what_arg )
: exception ( id_ , what_arg )
{ }
} ;
/*!
@ brief exception indicating executing a member function with a wrong type
Exceptions have ids 3 xx .
name / id | example massage | description
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - -
json . exception . type_error .301 | cannot create object from initializer list | To create an object from an initializer list , the initializer list must consist only of a list of pairs whose first element is a string . When this constraint is violated , an array is created instead .
json . exception . type_error .302 | type must be object , but is array | During implicit or explicit value conversion , the JSON type must be compatible to the target type . For instance , a JSON string can only be converted into string types , but not into numbers or boolean types .
json . exception . type_error .303 | incompatible ReferenceType for get_ref , actual type is object | To retrieve a reference to a value stored in a @ ref basic_json object with @ ref get_ref , the type of the reference must match the value type . For instance , for a JSON array , the @ a ReferenceType must be @ ref array_t & .
json . exception . type_error .304 | cannot use at ( ) with string | The @ ref at ( ) member functions can only be executed for certain JSON types .
json . exception . type_error .305 | cannot use operator [ ] with string | The @ ref operator [ ] member functions can only be executed for certain JSON types .
json . exception . type_error .306 | cannot use value ( ) with string | The @ ref value ( ) member functions can only be executed for certain JSON types .
json . exception . type_error .307 | cannot use erase ( ) with string | The @ ref erase ( ) member functions can only be executed for certain JSON types .
json . exception . type_error .308 | cannot use push_back ( ) with string | The @ ref push_back ( ) and @ ref operator + = member functions can only be executed for certain JSON types .
json . exception . type_error .309 | cannot use insert ( ) with | The @ ref insert ( ) member functions can only be executed for certain JSON types .
json . exception . type_error .310 | cannot use swap ( ) with number | The @ ref swap ( ) member functions can only be executed for certain JSON types .
json . exception . type_error .311 | cannot use emplace_back ( ) with string | The @ ref emplace_back ( ) member function can only be executed for certain JSON types .
json . exception . type_error .313 | invalid value to unflatten | The @ ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value . The JSON Pointers must not overlap , because then the resulting value would not be well defined .
json . exception . type_error .314 | only objects can be unflattened | The @ ref unflatten function only works for an object whose keys are JSON Pointers .
json . exception . type_error .315 | values in object must be primitive | The @ ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive .
@ since version 3.0 .0
*/
class type_error : public exception
{
public :
static type_error create ( int id , const std : : string & what_arg )
{
std : : string w = exception : : name ( " type_error " , id ) + what_arg ;
return type_error ( id , w . c_str ( ) ) ;
}
private :
type_error ( int id_ , const char * what_arg )
: exception ( id_ , what_arg )
{ }
} ;
/*!
@ brief exception indicating access out of the defined range
Exceptions have ids 4 xx .
name / id | example massage | description
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - -
json . exception . out_of_range .401 | array index 3 is out of range | The provided array index @ a i is larger than @ a size - 1.
json . exception . out_of_range .402 | array index ' - ' ( 3 ) is out of range | The special array index ` - ` in a JSON Pointer never describes a valid element of the array , but the index past the end . That is , it can only be used to add elements at this position , but not to read it .
json . exception . out_of_range .403 | key ' foo ' not found | The provided key was not found in the JSON object .
json . exception . out_of_range .404 | unresolved reference token ' foo ' | A reference token in a JSON Pointer could not be resolved .
json . exception . out_of_range .405 | JSON pointer has no parent | The JSON Patch operations ' remove ' and ' add ' can not be applied to the root element of the JSON value .
json . exception . out_of_range .406 | number overflow parsing ' 10E1000 ' | A parsed number could not be stored as without changing it to NaN or INF .
@ since version 3.0 .0
*/
class out_of_range : public exception
{
public :
static out_of_range create ( int id , const std : : string & what_arg )
{
std : : string w = exception : : name ( " out_of_range " , id ) + what_arg ;
return out_of_range ( id , w . c_str ( ) ) ;
}
private :
out_of_range ( int id_ , const char * what_arg )
: exception ( id_ , what_arg )
{ }
} ;
/*!
@ brief exception indicating other errors
Exceptions have ids 5 xx .
name / id | example massage | description
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - -
json . exception . other_error .501 | unsuccessful : { " op " : " test " , " path " : " /baz " , " value " : " bar " } | A JSON Patch operation ' test ' failed . The unsuccessful operation is also printed .
@ since version 3.0 .0
*/
class other_error : public exception
{
public :
static other_error create ( int id , const std : : string & what_arg )
{
std : : string w = exception : : name ( " other_error " , id ) + what_arg ;
return other_error ( id , w . c_str ( ) ) ;
}
private :
other_error ( int id_ , const char * what_arg )
: exception ( id_ , what_arg )
{ }
} ;
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@ brief the JSON type enumeration
This enumeration collects the different JSON types . It is internally used to
distinguish the stored values , and the functions @ ref basic_json : : is_null ( ) ,
@ ref basic_json : : is_object ( ) , @ ref basic_json : : is_array ( ) ,
@ ref basic_json : : is_string ( ) , @ ref basic_json : : is_boolean ( ) ,
@ ref basic_json : : is_number ( ) ( with @ ref basic_json : : is_number_integer ( ) ,
@ ref basic_json : : is_number_unsigned ( ) , and @ ref basic_json : : is_number_float ( ) ) ,
@ ref basic_json : : is_discarded ( ) , @ ref basic_json : : is_primitive ( ) , and
@ ref basic_json : : is_structured ( ) rely on it .
@ note There are three enumeration entries ( number_integer , number_unsigned , and
number_float ) , because the library distinguishes these three types for numbers :
@ ref basic_json : : number_unsigned_t is used for unsigned integers ,
@ ref basic_json : : number_integer_t is used for signed integers , and
@ ref basic_json : : number_float_t is used for floating - point numbers or to
approximate integers which do not fit in the limits of their respective type .
@ sa @ ref basic_json : : basic_json ( const value_t value_type ) - - create a JSON
value with the default value for a given type
@ since version 1.0 .0
*/
enum class value_t : uint8_t
{
null , ///< null value
object , ///< object (unordered set of name/value pairs)
array , ///< array (ordered collection of values)
string , ///< string value
boolean , ///< boolean value
number_integer , ///< number value (signed integer)
number_unsigned , ///< number value (unsigned integer)
number_float , ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
} ;
/*!
@ brief comparison operator for JSON types
Returns an ordering that is similar to Python :
- order : null < boolean < number < object < array < string
- furthermore , each type is not smaller than itself
@ since version 1.0 .0
*/
inline bool operator < ( const value_t lhs , const value_t rhs ) noexcept
{
static constexpr std : : array < uint8_t , 8 > order = { {
0 , // null
3 , // object
4 , // array
5 , // string
1 , // boolean
2 , // integer
2 , // unsigned
2 , // float
}
} ;
// discarded values are not comparable
if ( lhs = = value_t : : discarded or rhs = = value_t : : discarded )
{
return false ;
}
return order [ static_cast < std : : size_t > ( lhs ) ] <
order [ static_cast < std : : size_t > ( rhs ) ] ;
}
/////////////
// helpers //
/////////////
// alias templates to reduce boilerplate
template < bool B , typename T = void >
using enable_if_t = typename std : : enable_if < B , T > : : type ;
template < typename T >
using uncvref_t = typename std : : remove_cv < typename std : : remove_reference < T > : : type > : : type ;
/*
Implementation of two C + + 17 constructs : conjunction , negation . This is needed
to avoid evaluating all the traits in a condition
For example : not std : : is_same < void , T > : : value and has_value_type < T > : : value
will not compile when T = void ( on MSVC at least ) . Whereas
conjunction < negation < std : : is_same < void , T > > , has_value_type < T > > : : value will
stop evaluating if negation < . . . > : : value = = false
Please note that those constructs must be used with caution , since symbols can
become very long quickly ( which can slow down compilation and cause MSVC
internal compiler errors ) . Only use it when you have to ( see example ahead ) .
*/
template < class . . . > struct conjunction : std : : true_type { } ;
template < class B1 > struct conjunction < B1 > : B1 { } ;
template < class B1 , class . . . Bn >
struct conjunction < B1 , Bn . . . > : std : : conditional < bool ( B1 : : value ) , conjunction < Bn . . . > , B1 > : : type { } ;
template < class B > struct negation : std : : integral_constant < bool , ! B : : value > { } ;
// dispatch utility (taken from ranges-v3)
template < unsigned N > struct priority_tag : priority_tag < N - 1 > { } ;
template < > struct priority_tag < 0 > { } ;
//////////////////
// constructors //
//////////////////
template < value_t > struct external_constructor ;
template < >
struct external_constructor < value_t : : boolean >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , typename BasicJsonType : : boolean_t b ) noexcept
{
j . m_type = value_t : : boolean ;
j . m_value = b ;
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : string >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , const typename BasicJsonType : : string_t & s )
{
j . m_type = value_t : : string ;
j . m_value = s ;
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : number_float >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , typename BasicJsonType : : number_float_t val ) noexcept
{
j . m_type = value_t : : number_float ;
j . m_value = val ;
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : number_unsigned >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , typename BasicJsonType : : number_unsigned_t val ) noexcept
{
j . m_type = value_t : : number_unsigned ;
j . m_value = val ;
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : number_integer >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , typename BasicJsonType : : number_integer_t val ) noexcept
{
j . m_type = value_t : : number_integer ;
j . m_value = val ;
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : array >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , const typename BasicJsonType : : array_t & arr )
{
j . m_type = value_t : : array ;
j . m_value = arr ;
j . assert_invariant ( ) ;
}
template < typename BasicJsonType , typename CompatibleArrayType ,
enable_if_t < not std : : is_same < CompatibleArrayType ,
typename BasicJsonType : : array_t > : : value ,
int > = 0 >
static void construct ( BasicJsonType & j , const CompatibleArrayType & arr )
{
using std : : begin ;
using std : : end ;
j . m_type = value_t : : array ;
j . m_value . array = j . template create < typename BasicJsonType : : array_t > ( begin ( arr ) , end ( arr ) ) ;
j . assert_invariant ( ) ;
}
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , const std : : vector < bool > & arr )
{
j . m_type = value_t : : array ;
j . m_value = value_t : : array ;
j . m_value . array - > reserve ( arr . size ( ) ) ;
for ( bool x : arr )
{
j . m_value . array - > push_back ( x ) ;
}
j . assert_invariant ( ) ;
}
} ;
template < >
struct external_constructor < value_t : : object >
{
template < typename BasicJsonType >
static void construct ( BasicJsonType & j , const typename BasicJsonType : : object_t & obj )
{
j . m_type = value_t : : object ;
j . m_value = obj ;
j . assert_invariant ( ) ;
}
template < typename BasicJsonType , typename CompatibleObjectType ,
enable_if_t < not std : : is_same < CompatibleObjectType ,
typename BasicJsonType : : object_t > : : value ,
int > = 0 >
static void construct ( BasicJsonType & j , const CompatibleObjectType & obj )
{
using std : : begin ;
using std : : end ;
j . m_type = value_t : : object ;
j . m_value . object = j . template create < typename BasicJsonType : : object_t > ( begin ( obj ) , end ( obj ) ) ;
j . assert_invariant ( ) ;
}
} ;
////////////////////////
// has_/is_ functions //
////////////////////////
/*!
@ brief Helper to determine whether there ' s a key_type for T .
This helper is used to tell associative containers apart from other containers
such as sequence containers . For instance , ` std : : map ` passes the test as it
contains a ` mapped_type ` , whereas ` std : : vector ` fails the test .
@ sa http : //stackoverflow.com/a/7728728/266378
@ since version 1.0 .0 , overworked in version 2.0 .6
*/
# define NLOHMANN_JSON_HAS_HELPER(type) \
template < typename T > struct has_ # # type { \
private : \
template < typename U , typename = typename U : : type > \
static int detect ( U & & ) ; \
static void detect ( . . . ) ; \
public : \
static constexpr bool value = \
std : : is_integral < decltype ( detect ( std : : declval < T > ( ) ) ) > : : value ; \
}
NLOHMANN_JSON_HAS_HELPER ( mapped_type ) ;
NLOHMANN_JSON_HAS_HELPER ( key_type ) ;
NLOHMANN_JSON_HAS_HELPER ( value_type ) ;
NLOHMANN_JSON_HAS_HELPER ( iterator ) ;
# undef NLOHMANN_JSON_HAS_HELPER
template < bool B , class RealType , class CompatibleObjectType >
struct is_compatible_object_type_impl : std : : false_type { } ;
template < class RealType , class CompatibleObjectType >
struct is_compatible_object_type_impl < true , RealType , CompatibleObjectType >
{
static constexpr auto value =
std : : is_constructible < typename RealType : : key_type ,
typename CompatibleObjectType : : key_type > : : value and
std : : is_constructible < typename RealType : : mapped_type ,
typename CompatibleObjectType : : mapped_type > : : value ;
} ;
template < class BasicJsonType , class CompatibleObjectType >
struct is_compatible_object_type
{
static auto constexpr value = is_compatible_object_type_impl <
conjunction < negation < std : : is_same < void , CompatibleObjectType > > ,
has_mapped_type < CompatibleObjectType > ,
has_key_type < CompatibleObjectType > > : : value ,
typename BasicJsonType : : object_t , CompatibleObjectType > : : value ;
} ;
template < typename BasicJsonType , typename T >
struct is_basic_json_nested_type
{
static auto constexpr value = std : : is_same < T , typename BasicJsonType : : iterator > : : value or
std : : is_same < T , typename BasicJsonType : : const_iterator > : : value or
std : : is_same < T , typename BasicJsonType : : reverse_iterator > : : value or
std : : is_same < T , typename BasicJsonType : : const_reverse_iterator > : : value or
std : : is_same < T , typename BasicJsonType : : json_pointer > : : value ;
} ;
template < class BasicJsonType , class CompatibleArrayType >
struct is_compatible_array_type
{
static auto constexpr value =
conjunction < negation < std : : is_same < void , CompatibleArrayType > > ,
negation < is_compatible_object_type <
BasicJsonType , CompatibleArrayType > > ,
negation < std : : is_constructible < typename BasicJsonType : : string_t ,
CompatibleArrayType > > ,
negation < is_basic_json_nested_type < BasicJsonType , CompatibleArrayType > > ,
has_value_type < CompatibleArrayType > ,
has_iterator < CompatibleArrayType > > : : value ;
} ;
template < bool , typename , typename >
struct is_compatible_integer_type_impl : std : : false_type { } ;
template < typename RealIntegerType , typename CompatibleNumberIntegerType >
struct is_compatible_integer_type_impl < true , RealIntegerType , CompatibleNumberIntegerType >
{
// is there an assert somewhere on overflows?
using RealLimits = std : : numeric_limits < RealIntegerType > ;
using CompatibleLimits = std : : numeric_limits < CompatibleNumberIntegerType > ;
static constexpr auto value =
std : : is_constructible < RealIntegerType ,
CompatibleNumberIntegerType > : : value and
CompatibleLimits : : is_integer and
RealLimits : : is_signed = = CompatibleLimits : : is_signed ;
} ;
template < typename RealIntegerType , typename CompatibleNumberIntegerType >
struct is_compatible_integer_type
{
static constexpr auto value =
is_compatible_integer_type_impl <
std : : is_integral < CompatibleNumberIntegerType > : : value and
not std : : is_same < bool , CompatibleNumberIntegerType > : : value ,
RealIntegerType , CompatibleNumberIntegerType > : : value ;
} ;
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template < typename BasicJsonType , typename T >
struct has_from_json
{
private :
// also check the return type of from_json
template < typename U , typename = enable_if_t < std : : is_same < void , decltype ( uncvref_t < U > : : from_json (
std : : declval < BasicJsonType > ( ) , std : : declval < T & > ( ) ) ) > : : value > >
static int detect ( U & & ) ;
static void detect ( . . . ) ;
public :
static constexpr bool value = std : : is_integral < decltype (
detect ( std : : declval < typename BasicJsonType : : template json_serializer < T , void > > ( ) ) ) > : : value ;
} ;
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template < typename BasicJsonType , typename T >
struct has_non_default_from_json
{
private :
template <
typename U ,
typename = enable_if_t < std : : is_same <
T , decltype ( uncvref_t < U > : : from_json ( std : : declval < BasicJsonType > ( ) ) ) > : : value > >
static int detect ( U & & ) ;
static void detect ( . . . ) ;
public :
static constexpr bool value = std : : is_integral < decltype ( detect (
std : : declval < typename BasicJsonType : : template json_serializer < T , void > > ( ) ) ) > : : value ;
} ;
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
template < typename BasicJsonType , typename T >
struct has_to_json
{
private :
template < typename U , typename = decltype ( uncvref_t < U > : : to_json (
std : : declval < BasicJsonType & > ( ) , std : : declval < T > ( ) ) ) >
static int detect ( U & & ) ;
static void detect ( . . . ) ;
public :
static constexpr bool value = std : : is_integral < decltype ( detect (
std : : declval < typename BasicJsonType : : template json_serializer < T , void > > ( ) ) ) > : : value ;
} ;
/////////////
// to_json //
/////////////
template < typename BasicJsonType , typename T , enable_if_t <
std : : is_same < T , typename BasicJsonType : : boolean_t > : : value , int > = 0 >
void to_json ( BasicJsonType & j , T b ) noexcept
{
external_constructor < value_t : : boolean > : : construct ( j , b ) ;
}
template < typename BasicJsonType , typename CompatibleString ,
enable_if_t < std : : is_constructible < typename BasicJsonType : : string_t ,
CompatibleString > : : value , int > = 0 >
void to_json ( BasicJsonType & j , const CompatibleString & s )
{
external_constructor < value_t : : string > : : construct ( j , s ) ;
}
template < typename BasicJsonType , typename FloatType ,
enable_if_t < std : : is_floating_point < FloatType > : : value , int > = 0 >
void to_json ( BasicJsonType & j , FloatType val ) noexcept
{
external_constructor < value_t : : number_float > : : construct ( j , static_cast < typename BasicJsonType : : number_float_t > ( val ) ) ;
}
template <
typename BasicJsonType , typename CompatibleNumberUnsignedType ,
enable_if_t < is_compatible_integer_type < typename BasicJsonType : : number_unsigned_t ,
CompatibleNumberUnsignedType > : : value , int > = 0 >
void to_json ( BasicJsonType & j , CompatibleNumberUnsignedType val ) noexcept
{
external_constructor < value_t : : number_unsigned > : : construct ( j , static_cast < typename BasicJsonType : : number_unsigned_t > ( val ) ) ;
}
template <
typename BasicJsonType , typename CompatibleNumberIntegerType ,
enable_if_t < is_compatible_integer_type < typename BasicJsonType : : number_integer_t ,
CompatibleNumberIntegerType > : : value , int > = 0 >
void to_json ( BasicJsonType & j , CompatibleNumberIntegerType val ) noexcept
{
external_constructor < value_t : : number_integer > : : construct ( j , static_cast < typename BasicJsonType : : number_integer_t > ( val ) ) ;
}
template < typename BasicJsonType , typename EnumType ,
enable_if_t < std : : is_enum < EnumType > : : value , int > = 0 >
void to_json ( BasicJsonType & j , EnumType e ) noexcept
{
using underlying_type = typename std : : underlying_type < EnumType > : : type ;
external_constructor < value_t : : number_integer > : : construct ( j , static_cast < underlying_type > ( e ) ) ;
}
template < typename BasicJsonType >
void to_json ( BasicJsonType & j , const std : : vector < bool > & e )
{
external_constructor < value_t : : array > : : construct ( j , e ) ;
}
template <
typename BasicJsonType , typename CompatibleArrayType ,
enable_if_t <
is_compatible_array_type < BasicJsonType , CompatibleArrayType > : : value or
std : : is_same < typename BasicJsonType : : array_t , CompatibleArrayType > : : value ,
int > = 0 >
void to_json ( BasicJsonType & j , const CompatibleArrayType & arr )
{
external_constructor < value_t : : array > : : construct ( j , arr ) ;
}
template <
typename BasicJsonType , typename CompatibleObjectType ,
enable_if_t < is_compatible_object_type < BasicJsonType , CompatibleObjectType > : : value ,
int > = 0 >
void to_json ( BasicJsonType & j , const CompatibleObjectType & arr )
{
external_constructor < value_t : : object > : : construct ( j , arr ) ;
}
template < typename BasicJsonType , typename T , std : : size_t N ,
enable_if_t < not std : : is_constructible <
typename BasicJsonType : : string_t , T ( & ) [ N ] > : : value ,
int > = 0 >
void to_json ( BasicJsonType & j , T ( & arr ) [ N ] )
{
external_constructor < value_t : : array > : : construct ( j , arr ) ;
}
///////////////
// from_json //
///////////////
// overloads for basic_json template parameters
template < typename BasicJsonType , typename ArithmeticType ,
enable_if_t < std : : is_arithmetic < ArithmeticType > : : value and
not std : : is_same < ArithmeticType ,
typename BasicJsonType : : boolean_t > : : value ,
int > = 0 >
void get_arithmetic_value ( const BasicJsonType & j , ArithmeticType & val )
{
switch ( static_cast < value_t > ( j ) )
{
case value_t : : number_unsigned :
{
val = static_cast < ArithmeticType > (
* j . template get_ptr < const typename BasicJsonType : : number_unsigned_t * > ( ) ) ;
break ;
}
case value_t : : number_integer :
{
val = static_cast < ArithmeticType > (
* j . template get_ptr < const typename BasicJsonType : : number_integer_t * > ( ) ) ;
break ;
}
case value_t : : number_float :
{
val = static_cast < ArithmeticType > (
* j . template get_ptr < const typename BasicJsonType : : number_float_t * > ( ) ) ;
break ;
}
default :
{
JSON_THROW ( type_error : : create ( 302 , " type must be number, but is " + j . type_name ( ) ) ) ;
}
}
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : boolean_t & b )
{
if ( not j . is_boolean ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be boolean, but is " + j . type_name ( ) ) ) ;
}
b = * j . template get_ptr < const typename BasicJsonType : : boolean_t * > ( ) ;
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : string_t & s )
{
if ( not j . is_string ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be string, but is " + j . type_name ( ) ) ) ;
}
s = * j . template get_ptr < const typename BasicJsonType : : string_t * > ( ) ;
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : number_float_t & val )
{
get_arithmetic_value ( j , val ) ;
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : number_unsigned_t & val )
{
get_arithmetic_value ( j , val ) ;
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : number_integer_t & val )
{
get_arithmetic_value ( j , val ) ;
}
template < typename BasicJsonType , typename EnumType ,
enable_if_t < std : : is_enum < EnumType > : : value , int > = 0 >
void from_json ( const BasicJsonType & j , EnumType & e )
{
typename std : : underlying_type < EnumType > : : type val ;
get_arithmetic_value ( j , val ) ;
e = static_cast < EnumType > ( val ) ;
}
template < typename BasicJsonType >
void from_json ( const BasicJsonType & j , typename BasicJsonType : : array_t & arr )
{
if ( not j . is_array ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be array, but is " + j . type_name ( ) ) ) ;
}
arr = * j . template get_ptr < const typename BasicJsonType : : array_t * > ( ) ;
}
// forward_list doesn't have an insert method
template < typename BasicJsonType , typename T , typename Allocator ,
enable_if_t < std : : is_convertible < BasicJsonType , T > : : value , int > = 0 >
void from_json ( const BasicJsonType & j , std : : forward_list < T , Allocator > & l )
{
if ( not j . is_array ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be array, but is " + j . type_name ( ) ) ) ;
}
for ( auto it = j . rbegin ( ) , end = j . rend ( ) ; it ! = end ; + + it )
{
l . push_front ( it - > template get < T > ( ) ) ;
}
}
template < typename BasicJsonType , typename CompatibleArrayType >
void from_json_array_impl ( const BasicJsonType & j , CompatibleArrayType & arr , priority_tag < 0 > )
{
using std : : begin ;
using std : : end ;
std : : transform ( j . begin ( ) , j . end ( ) ,
std : : inserter ( arr , end ( arr ) ) , [ ] ( const BasicJsonType & i )
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i . template get < typename CompatibleArrayType : : value_type > ( ) ;
} ) ;
}
template < typename BasicJsonType , typename CompatibleArrayType >
auto from_json_array_impl ( const BasicJsonType & j , CompatibleArrayType & arr , priority_tag < 1 > )
- > decltype (
arr . reserve ( std : : declval < typename CompatibleArrayType : : size_type > ( ) ) ,
void ( ) )
{
using std : : begin ;
using std : : end ;
arr . reserve ( j . size ( ) ) ;
std : : transform ( j . begin ( ) , j . end ( ) ,
std : : inserter ( arr , end ( arr ) ) , [ ] ( const BasicJsonType & i )
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i . template get < typename CompatibleArrayType : : value_type > ( ) ;
} ) ;
}
template < typename BasicJsonType , typename CompatibleArrayType ,
enable_if_t < is_compatible_array_type < BasicJsonType , CompatibleArrayType > : : value and
std : : is_convertible < BasicJsonType , typename CompatibleArrayType : : value_type > : : value and
not std : : is_same < typename BasicJsonType : : array_t , CompatibleArrayType > : : value , int > = 0 >
void from_json ( const BasicJsonType & j , CompatibleArrayType & arr )
{
if ( not j . is_array ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be array, but is " + j . type_name ( ) ) ) ;
}
from_json_array_impl ( j , arr , priority_tag < 1 > { } ) ;
}
template < typename BasicJsonType , typename CompatibleObjectType ,
enable_if_t < is_compatible_object_type < BasicJsonType , CompatibleObjectType > : : value , int > = 0 >
void from_json ( const BasicJsonType & j , CompatibleObjectType & obj )
{
if ( not j . is_object ( ) )
{
JSON_THROW ( type_error : : create ( 302 , " type must be object, but is " + j . type_name ( ) ) ) ;
}
auto inner_object = j . template get_ptr < const typename BasicJsonType : : object_t * > ( ) ;
using std : : begin ;
using std : : end ;
// we could avoid the assignment, but this might require a for loop, which
// might be less efficient than the container constructor for some
// containers (would it?)
obj = CompatibleObjectType ( begin ( * inner_object ) , end ( * inner_object ) ) ;
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template < typename BasicJsonType , typename ArithmeticType ,
enable_if_t <
std : : is_arithmetic < ArithmeticType > : : value and
not std : : is_same < ArithmeticType , typename BasicJsonType : : number_unsigned_t > : : value and
not std : : is_same < ArithmeticType , typename BasicJsonType : : number_integer_t > : : value and
not std : : is_same < ArithmeticType , typename BasicJsonType : : number_float_t > : : value and
not std : : is_same < ArithmeticType , typename BasicJsonType : : boolean_t > : : value ,
int > = 0 >
void from_json ( const BasicJsonType & j , ArithmeticType & val )
{
switch ( static_cast < value_t > ( j ) )
{
case value_t : : number_unsigned :
{
val = static_cast < ArithmeticType > ( * j . template get_ptr < const typename BasicJsonType : : number_unsigned_t * > ( ) ) ;
break ;
}
case value_t : : number_integer :
{
val = static_cast < ArithmeticType > ( * j . template get_ptr < const typename BasicJsonType : : number_integer_t * > ( ) ) ;
break ;
}
case value_t : : number_float :
{
val = static_cast < ArithmeticType > ( * j . template get_ptr < const typename BasicJsonType : : number_float_t * > ( ) ) ;
break ;
}
case value_t : : boolean :
{
val = static_cast < ArithmeticType > ( * j . template get_ptr < const typename BasicJsonType : : boolean_t * > ( ) ) ;
break ;
}
default :
{
JSON_THROW ( type_error : : create ( 302 , " type must be number, but is " + j . type_name ( ) ) ) ;
}
}
}
struct to_json_fn
{
private :
template < typename BasicJsonType , typename T >
auto call ( BasicJsonType & j , T & & val , priority_tag < 1 > ) const noexcept ( noexcept ( to_json ( j , std : : forward < T > ( val ) ) ) )
- > decltype ( to_json ( j , std : : forward < T > ( val ) ) , void ( ) )
{
return to_json ( j , std : : forward < T > ( val ) ) ;
}
template < typename BasicJsonType , typename T >
void call ( BasicJsonType & , T & & , priority_tag < 0 > ) const noexcept
{
static_assert ( sizeof ( BasicJsonType ) = = 0 ,
" could not find to_json() method in T's namespace " ) ;
}
public :
template < typename BasicJsonType , typename T >
void operator ( ) ( BasicJsonType & j , T & & val ) const
noexcept ( noexcept ( std : : declval < to_json_fn > ( ) . call ( j , std : : forward < T > ( val ) , priority_tag < 1 > { } ) ) )
{
return call ( j , std : : forward < T > ( val ) , priority_tag < 1 > { } ) ;
}
} ;
struct from_json_fn
{
private :
template < typename BasicJsonType , typename T >
auto call ( const BasicJsonType & j , T & val , priority_tag < 1 > ) const
noexcept ( noexcept ( from_json ( j , val ) ) )
- > decltype ( from_json ( j , val ) , void ( ) )
{
return from_json ( j , val ) ;
}
template < typename BasicJsonType , typename T >
void call ( const BasicJsonType & , T & , priority_tag < 0 > ) const noexcept
{
static_assert ( sizeof ( BasicJsonType ) = = 0 ,
" could not find from_json() method in T's namespace " ) ;
}
public :
template < typename BasicJsonType , typename T >
void operator ( ) ( const BasicJsonType & j , T & val ) const
noexcept ( noexcept ( std : : declval < from_json_fn > ( ) . call ( j , val , priority_tag < 1 > { } ) ) )
{
return call ( j , val , priority_tag < 1 > { } ) ;
}
} ;
// taken from ranges-v3
template < typename T >
struct static_const
{
static constexpr T value { } ;
} ;
template < typename T >
constexpr T static_const < T > : : value ;
} // namespace detail
/// namespace to hold default `to_json` / `from_json` functions
namespace
{
constexpr const auto & to_json = detail : : static_const < detail : : to_json_fn > : : value ;
constexpr const auto & from_json = detail : : static_const < detail : : from_json_fn > : : value ;
}
/*!
@ brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
( [ argument - dependent lookup ] ( http : //en.cppreference.com/w/cpp/language/adl))
for serialization .
*/
template < typename = void , typename = void >
struct adl_serializer
{
/*!
@ brief convert a JSON value to any value type
This function is usually called by the ` get ( ) ` function of the
@ ref basic_json class ( either explicit or via conversion operators ) .
@ param [ in ] j JSON value to read from
@ param [ in , out ] val value to write to
*/
template < typename BasicJsonType , typename ValueType >
static void from_json ( BasicJsonType & & j , ValueType & val ) noexcept (
noexcept ( : : nlohmann : : from_json ( std : : forward < BasicJsonType > ( j ) , val ) ) )
{
: : nlohmann : : from_json ( std : : forward < BasicJsonType > ( j ) , val ) ;
}
/*!
@ brief convert any value type to a JSON value
This function is usually called by the constructors of the @ ref basic_json
class .
@ param [ in , out ] j JSON value to write to
@ param [ in ] val value to read from
*/
template < typename BasicJsonType , typename ValueType >
static void to_json ( BasicJsonType & j , ValueType & & val ) noexcept (
noexcept ( : : nlohmann : : to_json ( j , std : : forward < ValueType > ( val ) ) ) )
{
: : nlohmann : : to_json ( j , std : : forward < ValueType > ( val ) ) ;
}
} ;
/*!
@ brief a class to store JSON values
@ tparam ObjectType type for JSON objects ( ` std : : map ` by default ; will be used
in @ ref object_t )
@ tparam ArrayType type for JSON arrays ( ` std : : vector ` by default ; will be used
in @ ref array_t )
@ tparam StringType type for JSON strings and object keys ( ` std : : string ` by
default ; will be used in @ ref string_t )
@ tparam BooleanType type for JSON booleans ( ` bool ` by default ; will be used
in @ ref boolean_t )
@ tparam NumberIntegerType type for JSON integer numbers ( ` int64_t ` by
default ; will be used in @ ref number_integer_t )
@ tparam NumberUnsignedType type for JSON unsigned integer numbers ( @ c
` uint64_t ` by default ; will be used in @ ref number_unsigned_t )
@ tparam NumberFloatType type for JSON floating - point numbers ( ` double ` by
default ; will be used in @ ref number_float_t )
@ tparam AllocatorType type of the allocator to use ( ` std : : allocator ` by
default )
@ tparam JSONSerializer the serializer to resolve internal calls to ` to_json ( ) `
and ` from_json ( ) ` ( @ ref adl_serializer by default )
@ requirement The class satisfies the following concept requirements :
- Basic
- [ DefaultConstructible ] ( http : //en.cppreference.com/w/cpp/concept/DefaultConstructible):
JSON values can be default constructed . The result will be a JSON null
value .
- [ MoveConstructible ] ( http : //en.cppreference.com/w/cpp/concept/MoveConstructible):
A JSON value can be constructed from an rvalue argument .
- [ CopyConstructible ] ( http : //en.cppreference.com/w/cpp/concept/CopyConstructible):
A JSON value can be copy - constructed from an lvalue expression .
- [ MoveAssignable ] ( http : //en.cppreference.com/w/cpp/concept/MoveAssignable):
A JSON value van be assigned from an rvalue argument .
- [ CopyAssignable ] ( http : //en.cppreference.com/w/cpp/concept/CopyAssignable):
A JSON value can be copy - assigned from an lvalue expression .
- [ Destructible ] ( http : //en.cppreference.com/w/cpp/concept/Destructible):
JSON values can be destructed .
- Layout
- [ StandardLayoutType ] ( http : //en.cppreference.com/w/cpp/concept/StandardLayoutType):
JSON values have
[ standard layout ] ( http : //en.cppreference.com/w/cpp/language/data_members#Standard_layout):
All non - static data members are private and standard layout types , the
class has no virtual functions or ( virtual ) base classes .
- Library - wide
- [ EqualityComparable ] ( http : //en.cppreference.com/w/cpp/concept/EqualityComparable):
JSON values can be compared with ` = = ` , see @ ref
operator = = ( const_reference , const_reference ) .
- [ LessThanComparable ] ( http : //en.cppreference.com/w/cpp/concept/LessThanComparable):
JSON values can be compared with ` < ` , see @ ref
operator < ( const_reference , const_reference ) .
- [ Swappable ] ( http : //en.cppreference.com/w/cpp/concept/Swappable):
Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
other compatible types , using unqualified function call @ ref swap ( ) .
- [ NullablePointer ] ( http : //en.cppreference.com/w/cpp/concept/NullablePointer):
JSON values can be compared against ` std : : nullptr_t ` objects which are used
to model the ` null ` value .
- Container
- [ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container):
JSON values can be used like STL containers and provide iterator access .
- [ ReversibleContainer ] ( http : //en.cppreference.com/w/cpp/concept/ReversibleContainer);
JSON values can be used like STL containers and provide reverse iterator
access .
@ invariant The member variables @ a m_value and @ a m_type have the following
relationship :
- If ` m_type = = value_t : : object ` , then ` m_value . object ! = nullptr ` .
- If ` m_type = = value_t : : array ` , then ` m_value . array ! = nullptr ` .
- If ` m_type = = value_t : : string ` , then ` m_value . string ! = nullptr ` .
The invariants are checked by member function assert_invariant ( ) .
@ internal
@ note ObjectType trick from http : //stackoverflow.com/a/9860911
@ endinternal
@ see [ RFC 7159 : The JavaScript Object Notation ( JSON ) Data Interchange
Format ] ( http : //rfc7159.net/rfc7159)
@ since version 1.0 .0
@ nosubgrouping
*/
template <
template < typename U , typename V , typename . . . Args > class ObjectType = std : : map ,
template < typename U , typename . . . Args > class ArrayType = std : : vector ,
class StringType = std : : string ,
class BooleanType = bool ,
class NumberIntegerType = std : : int64_t ,
class NumberUnsignedType = std : : uint64_t ,
class NumberFloatType = double ,
template < typename U > class AllocatorType = std : : allocator ,
template < typename T , typename SFINAE = void > class JSONSerializer = adl_serializer
>
class basic_json
{
private :
template < detail : : value_t > friend struct detail : : external_constructor ;
/// workaround type for MSVC
using basic_json_t = basic_json < ObjectType , ArrayType , StringType ,
BooleanType , NumberIntegerType , NumberUnsignedType , NumberFloatType ,
AllocatorType , JSONSerializer > ;
public :
using value_t = detail : : value_t ;
// forward declarations
template < typename U > class iter_impl ;
template < typename Base > class json_reverse_iterator ;
class json_pointer ;
template < typename T , typename SFINAE >
using json_serializer = JSONSerializer < T , SFINAE > ;
////////////////
// exceptions //
////////////////
/// @name exceptions
/// Classes to implement user-defined exceptions.
/// @{
/// @copydoc detail::exception
using exception = detail : : exception ;
/// @copydoc detail::parse_error
using parse_error = detail : : parse_error ;
/// @copydoc detail::invalid_iterator
using invalid_iterator = detail : : invalid_iterator ;
/// @copydoc detail::type_error
using type_error = detail : : type_error ;
/// @copydoc detail::out_of_range
using out_of_range = detail : : out_of_range ;
/// @copydoc detail::other_error
using other_error = detail : : other_error ;
/// @}
/////////////////////
// container types //
/////////////////////
/// @name container types
/// The canonic container types to use @ref basic_json like any other STL
/// container.
/// @{
/// the type of elements in a basic_json container
using value_type = basic_json ;
/// the type of an element reference
using reference = value_type & ;
/// the type of an element const reference
using const_reference = const value_type & ;
/// a type to represent differences between iterators
using difference_type = std : : ptrdiff_t ;
/// a type to represent container sizes
using size_type = std : : size_t ;
/// the allocator type
using allocator_type = AllocatorType < basic_json > ;
/// the type of an element pointer
using pointer = typename std : : allocator_traits < allocator_type > : : pointer ;
/// the type of an element const pointer
using const_pointer = typename std : : allocator_traits < allocator_type > : : const_pointer ;
/// an iterator for a basic_json container
using iterator = iter_impl < basic_json > ;
/// a const iterator for a basic_json container
using const_iterator = iter_impl < const basic_json > ;
/// a reverse iterator for a basic_json container
using reverse_iterator = json_reverse_iterator < typename basic_json : : iterator > ;
/// a const reverse iterator for a basic_json container
using const_reverse_iterator = json_reverse_iterator < typename basic_json : : const_iterator > ;
/// @}
/*!
@ brief returns the allocator associated with the container
*/
static allocator_type get_allocator ( )
{
return allocator_type ( ) ;
}
/*!
@ brief returns version information on the library
This function returns a JSON object with information about the library ,
including the version number and information on the platform and compiler .
@ return JSON object holding version information
key | description
- - - - - - - - - - - | - - - - - - - - - - - - - - -
` compiler ` | Information on the used compiler . It is an object with the following keys : ` c + + ` ( the used C + + standard ) , ` family ` ( the compiler family ; possible values are ` clang ` , ` icc ` , ` gcc ` , ` ilecpp ` , ` msvc ` , ` pgcpp ` , ` sunpro ` , and ` unknown ` ) , and ` version ` ( the compiler version ) .
` copyright ` | The copyright line for the library as string .
` name ` | The name of the library as string .
` platform ` | The used platform as string . Possible values are ` win32 ` , ` linux ` , ` apple ` , ` unix ` , and ` unknown ` .
` url ` | The URL of the project as string .
` version ` | The version of the library . It is an object with the following keys : ` major ` , ` minor ` , and ` patch ` as defined by [ Semantic Versioning ] ( http : //semver.org), and `string` (the version string).
@ liveexample { The following code shows an example output of the ` meta ( ) `
function . , meta }
@ complexity Constant .
@ since 2.1 .0
*/
static basic_json meta ( )
{
basic_json result ;
result [ " copyright " ] = " (C) 2013-2017 Niels Lohmann " ;
result [ " name " ] = " JSON for Modern C++ " ;
result [ " url " ] = " https://github.com/nlohmann/json " ;
result [ " version " ] =
{
{ " string " , " 2.1.1 " } , { " major " , 2 } , { " minor " , 1 } , { " patch " , 1 }
} ;
# ifdef _WIN32
result [ " platform " ] = " win32 " ;
# elif defined __linux__
result [ " platform " ] = " linux " ;
# elif defined __APPLE__
result [ " platform " ] = " apple " ;
# elif defined __unix__
result [ " platform " ] = " unix " ;
# else
result [ " platform " ] = " unknown " ;
# endif
# if defined(__clang__)
result [ " compiler " ] = { { " family " , " clang " } , { " version " , __clang_version__ } } ;
# elif defined(__ICC) || defined(__INTEL_COMPILER)
result [ " compiler " ] = { { " family " , " icc " } , { " version " , __INTEL_COMPILER } } ;
# elif defined(__GNUC__) || defined(__GNUG__)
result [ " compiler " ] = { { " family " , " gcc " } , { " version " , std : : to_string ( __GNUC__ ) + " . " + std : : to_string ( __GNUC_MINOR__ ) + " . " + std : : to_string ( __GNUC_PATCHLEVEL__ ) } } ;
# elif defined(__HP_cc) || defined(__HP_aCC)
result [ " compiler " ] = " hp "
# elif defined(__IBMCPP__)
result [ " compiler " ] = { { " family " , " ilecpp " } , { " version " , __IBMCPP__ } } ;
# elif defined(_MSC_VER)
result [ " compiler " ] = { { " family " , " msvc " } , { " version " , _MSC_VER } } ;
# elif defined(__PGI)
result [ " compiler " ] = { { " family " , " pgcpp " } , { " version " , __PGI } } ;
# elif defined(__SUNPRO_CC)
result [ " compiler " ] = { { " family " , " sunpro " } , { " version " , __SUNPRO_CC } } ;
# else
result [ " compiler " ] = { { " family " , " unknown " } , { " version " , " unknown " } } ;
# endif
# ifdef __cplusplus
result [ " compiler " ] [ " c++ " ] = std : : to_string ( __cplusplus ) ;
# else
result [ " compiler " ] [ " c++ " ] = " unknown " ;
# endif
return result ;
}
///////////////////////////
// JSON value data types //
///////////////////////////
/// @name JSON value data types
/// The data types to store a JSON value. These types are derived from
/// the template arguments passed to class @ref basic_json.
/// @{
/*!
@ brief a type for an object
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes JSON objects as follows:
> An object is an unordered collection of zero or more name / value pairs ,
> where a name is a string and a value is a string , number , boolean , null ,
> object , or array .
To store objects in C + + , a type is defined by the template parameters
described below .
@ tparam ObjectType the container to store objects ( e . g . , ` std : : map ` or
` std : : unordered_map ` )
@ tparam StringType the type of the keys or names ( e . g . , ` std : : string ` ) .
The comparison function ` std : : less < StringType > ` is used to order elements
inside the container .
@ tparam AllocatorType the allocator to use for objects ( e . g . ,
` std : : allocator ` )
# ### Default type
With the default values for @ a ObjectType ( ` std : : map ` ) , @ a StringType
( ` std : : string ` ) , and @ a AllocatorType ( ` std : : allocator ` ) , the default
value for @ a object_t is :
@ code { . cpp }
std : : map <
std : : string , // key_type
basic_json , // value_type
std : : less < std : : string > , // key_compare
std : : allocator < std : : pair < const std : : string , basic_json > > // allocator_type
>
@ endcode
# ### Behavior
The choice of @ a object_t influences the behavior of the JSON class . With
the default type , objects have the following behavior :
- When all names are unique , objects will be interoperable in the sense
that all software implementations receiving that object will agree on
the name - value mappings .
- When the names within an object are not unique , later stored name / value
pairs overwrite previously stored name / value pairs , leaving the used
names unique . For instance , ` { " key " : 1 } ` and ` { " key " : 2 , " key " : 1 } ` will
be treated as equal and both stored as ` { " key " : 1 } ` .
- Internally , name / value pairs are stored in lexicographical order of the
names . Objects will also be serialized ( see @ ref dump ) in this order .
For instance , ` { " b " : 1 , " a " : 2 } ` and ` { " a " : 2 , " b " : 1 } ` will be stored
and serialized as ` { " a " : 2 , " b " : 1 } ` .
- When comparing objects , the order of the name / value pairs is irrelevant .
This makes objects interoperable in the sense that they will not be
affected by these differences . For instance , ` { " b " : 1 , " a " : 2 } ` and
` { " a " : 2 , " b " : 1 } ` will be treated as equal .
# ### Limits
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting .
In this class , the object ' s limit of nesting is not constraint explicitly .
However , a maximum depth of nesting may be introduced by the compiler or
runtime environment . A theoretical limit can be queried by calling the
@ ref max_size function of a JSON object .
# ### Storage
Objects are stored as pointers in a @ ref basic_json type . That is , for any
access to object values , a pointer of type ` object_t * ` must be
dereferenced .
@ sa @ ref array_t - - type for an array value
@ since version 1.0 .0
@ note The order name / value pairs are added to the object is * not *
preserved by the library . Therefore , iterating an object may return
name / value pairs in a different order than they were originally stored . In
fact , keys will be traversed in alphabetical order as ` std : : map ` with
` std : : less ` is used by default . Please note this behavior conforms to [ RFC
7159 ] ( http : //rfc7159.net/rfc7159), because any order implements the
specified " unordered " nature of JSON objects .
*/
using object_t = ObjectType < StringType ,
basic_json ,
std : : less < StringType > ,
AllocatorType < std : : pair < const StringType ,
basic_json > > > ;
/*!
@ brief a type for an array
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes JSON arrays as follows:
> An array is an ordered sequence of zero or more values .
To store objects in C + + , a type is defined by the template parameters
explained below .
@ tparam ArrayType container type to store arrays ( e . g . , ` std : : vector ` or
` std : : list ` )
@ tparam AllocatorType allocator to use for arrays ( e . g . , ` std : : allocator ` )
# ### Default type
With the default values for @ a ArrayType ( ` std : : vector ` ) and @ a
AllocatorType ( ` std : : allocator ` ) , the default value for @ a array_t is :
@ code { . cpp }
std : : vector <
basic_json , // value_type
std : : allocator < basic_json > // allocator_type
>
@ endcode
# ### Limits
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting .
In this class , the array ' s limit of nesting is not constraint explicitly .
However , a maximum depth of nesting may be introduced by the compiler or
runtime environment . A theoretical limit can be queried by calling the
@ ref max_size function of a JSON array .
# ### Storage
Arrays are stored as pointers in a @ ref basic_json type . That is , for any
access to array values , a pointer of type ` array_t * ` must be dereferenced .
@ sa @ ref object_t - - type for an object value
@ since version 1.0 .0
*/
using array_t = ArrayType < basic_json , AllocatorType < basic_json > > ;
/*!
@ brief a type for a string
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes JSON strings as follows:
> A string is a sequence of zero or more Unicode characters .
To store objects in C + + , a type is defined by the template parameter
described below . Unicode values are split by the JSON class into
byte - sized characters during deserialization .
@ tparam StringType the container to store strings ( e . g . , ` std : : string ` ) .
Note this container is used for keys / names in objects , see @ ref object_t .
# ### Default type
With the default values for @ a StringType ( ` std : : string ` ) , the default
value for @ a string_t is :
@ code { . cpp }
std : : string
@ endcode
# ### Encoding
Strings are stored in UTF - 8 encoding . Therefore , functions like
` std : : string : : size ( ) ` or ` std : : string : : length ( ) ` return the number of
bytes in the string rather than the number of characters or glyphs .
# ### String comparison
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) states:
> Software implementations are typically required to test names of object
> members for equality . Implementations that transform the textual
> representation into sequences of Unicode code units and then perform the
> comparison numerically , code unit by code unit , are interoperable in the
> sense that implementations will agree in all cases on equality or
> inequality of two strings . For example , implementations that compare
> strings with escaped characters unconverted may incorrectly find that
> ` " a \\ b " ` and ` " a \u005C b " ` are not equal .
This implementation is interoperable as it does compare strings code unit
by code unit .
# ### Storage
String values are stored as pointers in a @ ref basic_json type . That is ,
for any access to string values , a pointer of type ` string_t * ` must be
dereferenced .
@ since version 1.0 .0
*/
using string_t = StringType ;
/*!
@ brief a type for a boolean
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) implicitly describes a boolean as a
type which differentiates the two literals ` true ` and ` false ` .
To store objects in C + + , a type is defined by the template parameter @ a
BooleanType which chooses the type to use .
# ### Default type
With the default values for @ a BooleanType ( ` bool ` ) , the default value for
@ a boolean_t is :
@ code { . cpp }
bool
@ endcode
# ### Storage
Boolean values are stored directly inside a @ ref basic_json type .
@ since version 1.0 .0
*/
using boolean_t = BooleanType ;
/*!
@ brief a type for a number ( integer )
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages . A number is represented in base 10 using decimal
> digits . It contains an integer component that may be prefixed with an
> optional minus sign , which may be followed by a fraction part and / or an
> exponent part . Leading zeros are not allowed . ( . . . ) Numeric values that
> cannot be represented in the grammar below ( such as Infinity and NaN )
> are not permitted .
This description includes both integer and floating - point numbers .
However , C + + allows more precise storage if it is known whether the number
is a signed integer , an unsigned integer or a floating - point number .
Therefore , three different types , @ ref number_integer_t , @ ref
number_unsigned_t and @ ref number_float_t are used .
To store integer numbers in C + + , a type is defined by the template
parameter @ a NumberIntegerType which chooses the type to use .
# ### Default type
With the default values for @ a NumberIntegerType ( ` int64_t ` ) , the default
value for @ a number_integer_t is :
@ code { . cpp }
int64_t
@ endcode
# ### Default behavior
- The restrictions about leading zeros is not enforced in C + + . Instead ,
leading zeros in integer literals lead to an interpretation as octal
number . Internally , the value will be stored as decimal number . For
instance , the C + + integer literal ` 010 ` will be serialized to ` 8 ` .
During deserialization , leading zeros yield an error .
- Not - a - number ( NaN ) values will be serialized to ` null ` .
# ### Limits
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers .
When the default type is used , the maximal integer number that can be
stored is ` 9223372036854775807 ` ( INT64_MAX ) and the minimal integer number
that can be stored is ` - 9223372036854775808 ` ( INT64_MIN ) . Integer numbers
that are out of range will yield over / underflow when used in a
constructor . During deserialization , too large or small integer numbers
will be automatically be stored as @ ref number_unsigned_t or @ ref
number_float_t .
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) further states:
> Note that when such software is used , numbers that are integers and are
> in the range \ f $ [ - 2 ^ { 53 } + 1 , 2 ^ { 53 } - 1 ] \ f $ are interoperable in the sense
> that implementations will agree exactly on their numeric values .
As this range is a subrange of the exactly supported range [ INT64_MIN ,
INT64_MAX ] , this class ' s integer type is interoperable .
# ### Storage
Integer number values are stored directly inside a @ ref basic_json type .
@ sa @ ref number_float_t - - type for number values ( floating - point )
@ sa @ ref number_unsigned_t - - type for number values ( unsigned integer )
@ since version 1.0 .0
*/
using number_integer_t = NumberIntegerType ;
/*!
@ brief a type for a number ( unsigned )
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages . A number is represented in base 10 using decimal
> digits . It contains an integer component that may be prefixed with an
> optional minus sign , which may be followed by a fraction part and / or an
> exponent part . Leading zeros are not allowed . ( . . . ) Numeric values that
> cannot be represented in the grammar below ( such as Infinity and NaN )
> are not permitted .
This description includes both integer and floating - point numbers .
However , C + + allows more precise storage if it is known whether the number
is a signed integer , an unsigned integer or a floating - point number .
Therefore , three different types , @ ref number_integer_t , @ ref
number_unsigned_t and @ ref number_float_t are used .
To store unsigned integer numbers in C + + , a type is defined by the
template parameter @ a NumberUnsignedType which chooses the type to use .
# ### Default type
With the default values for @ a NumberUnsignedType ( ` uint64_t ` ) , the
default value for @ a number_unsigned_t is :
@ code { . cpp }
uint64_t
@ endcode
# ### Default behavior
- The restrictions about leading zeros is not enforced in C + + . Instead ,
leading zeros in integer literals lead to an interpretation as octal
number . Internally , the value will be stored as decimal number . For
instance , the C + + integer literal ` 010 ` will be serialized to ` 8 ` .
During deserialization , leading zeros yield an error .
- Not - a - number ( NaN ) values will be serialized to ` null ` .
# ### Limits
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers .
When the default type is used , the maximal integer number that can be
stored is ` 18446744073709551615 ` ( UINT64_MAX ) and the minimal integer
number that can be stored is ` 0 ` . Integer numbers that are out of range
will yield over / underflow when used in a constructor . During
deserialization , too large or small integer numbers will be automatically
be stored as @ ref number_integer_t or @ ref number_float_t .
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) further states:
> Note that when such software is used , numbers that are integers and are
> in the range \ f $ [ - 2 ^ { 53 } + 1 , 2 ^ { 53 } - 1 ] \ f $ are interoperable in the sense
> that implementations will agree exactly on their numeric values .
As this range is a subrange ( when considered in conjunction with the
number_integer_t type ) of the exactly supported range [ 0 , UINT64_MAX ] ,
this class ' s integer type is interoperable .
# ### Storage
Integer number values are stored directly inside a @ ref basic_json type .
@ sa @ ref number_float_t - - type for number values ( floating - point )
@ sa @ ref number_integer_t - - type for number values ( integer )
@ since version 2.0 .0
*/
using number_unsigned_t = NumberUnsignedType ;
/*!
@ brief a type for a number ( floating - point )
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages . A number is represented in base 10 using decimal
> digits . It contains an integer component that may be prefixed with an
> optional minus sign , which may be followed by a fraction part and / or an
> exponent part . Leading zeros are not allowed . ( . . . ) Numeric values that
> cannot be represented in the grammar below ( such as Infinity and NaN )
> are not permitted .
This description includes both integer and floating - point numbers .
However , C + + allows more precise storage if it is known whether the number
is a signed integer , an unsigned integer or a floating - point number .
Therefore , three different types , @ ref number_integer_t , @ ref
number_unsigned_t and @ ref number_float_t are used .
To store floating - point numbers in C + + , a type is defined by the template
parameter @ a NumberFloatType which chooses the type to use .
# ### Default type
With the default values for @ a NumberFloatType ( ` double ` ) , the default
value for @ a number_float_t is :
@ code { . cpp }
double
@ endcode
# ### Default behavior
- The restrictions about leading zeros is not enforced in C + + . Instead ,
leading zeros in floating - point literals will be ignored . Internally ,
the value will be stored as decimal number . For instance , the C + +
floating - point literal ` 01.2 ` will be serialized to ` 1.2 ` . During
deserialization , leading zeros yield an error .
- Not - a - number ( NaN ) values will be serialized to ` null ` .
# ### Limits
[ RFC 7159 ] ( http : //rfc7159.net/rfc7159) states:
> This specification allows implementations to set limits on the range and
> precision of numbers accepted . Since software that implements IEEE
> 754 - 2008 binary64 ( double precision ) numbers is generally available and
> widely used , good interoperability can be achieved by implementations
> that expect no more precision or range than these provide , in the sense
> that implementations will approximate JSON numbers within the expected
> precision .
This implementation does exactly follow this approach , as it uses double
precision floating - point numbers . Note values smaller than
` - 1.79769313486232e+308 ` and values greater than ` 1.79769313486232e+308 `
will be stored as NaN internally and be serialized to ` null ` .
# ### Storage
Floating - point number values are stored directly inside a @ ref basic_json
type .
@ sa @ ref number_integer_t - - type for number values ( integer )
@ sa @ ref number_unsigned_t - - type for number values ( unsigned integer )
@ since version 1.0 .0
*/
using number_float_t = NumberFloatType ;
/// @}
private :
/// helper for exception-safe object creation
template < typename T , typename . . . Args >
static T * create ( Args & & . . . args )
{
AllocatorType < T > alloc ;
auto deleter = [ & ] ( T * object )
{
alloc . deallocate ( object , 1 ) ;
} ;
std : : unique_ptr < T , decltype ( deleter ) > object ( alloc . allocate ( 1 ) , deleter ) ;
alloc . construct ( object . get ( ) , std : : forward < Args > ( args ) . . . ) ;
assert ( object ! = nullptr ) ;
return object . release ( ) ;
}
////////////////////////
// JSON value storage //
////////////////////////
/*!
@ brief a JSON value
The actual storage for a JSON value of the @ ref basic_json class . This
union combines the different storage types for the JSON value types
defined in @ ref value_t .
JSON type | value_t type | used type
- - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - -
object | object | pointer to @ ref object_t
array | array | pointer to @ ref array_t
string | string | pointer to @ ref string_t
boolean | boolean | @ ref boolean_t
number | number_integer | @ ref number_integer_t
number | number_unsigned | @ ref number_unsigned_t
number | number_float | @ ref number_float_t
null | null | * no value is stored *
@ note Variable - length types ( objects , arrays , and strings ) are stored as
pointers . The size of the union should not exceed 64 bits if the default
value types are used .
@ since version 1.0 .0
*/
union json_value
{
/// object (stored with pointer to save storage)
object_t * object ;
/// array (stored with pointer to save storage)
array_t * array ;
/// string (stored with pointer to save storage)
string_t * string ;
/// boolean
boolean_t boolean ;
/// number (integer)
number_integer_t number_integer ;
/// number (unsigned integer)
number_unsigned_t number_unsigned ;
/// number (floating-point)
number_float_t number_float ;
/// default constructor (for null values)
json_value ( ) = default ;
/// constructor for booleans
json_value ( boolean_t v ) noexcept : boolean ( v ) { }
/// constructor for numbers (integer)
json_value ( number_integer_t v ) noexcept : number_integer ( v ) { }
/// constructor for numbers (unsigned)
json_value ( number_unsigned_t v ) noexcept : number_unsigned ( v ) { }
/// constructor for numbers (floating-point)
json_value ( number_float_t v ) noexcept : number_float ( v ) { }
/// constructor for empty values of a given type
json_value ( value_t t )
{
switch ( t )
{
case value_t : : object :
{
object = create < object_t > ( ) ;
break ;
}
case value_t : : array :
{
array = create < array_t > ( ) ;
break ;
}
case value_t : : string :
{
string = create < string_t > ( " " ) ;
break ;
}
case value_t : : boolean :
{
boolean = boolean_t ( false ) ;
break ;
}
case value_t : : number_integer :
{
number_integer = number_integer_t ( 0 ) ;
break ;
}
case value_t : : number_unsigned :
{
number_unsigned = number_unsigned_t ( 0 ) ;
break ;
}
case value_t : : number_float :
{
number_float = number_float_t ( 0.0 ) ;
break ;
}
case value_t : : null :
{
break ;
}
default :
{
if ( JSON_UNLIKELY ( t = = value_t : : null ) )
{
JSON_THROW ( other_error : : create ( 500 , " 961c151d2e87f2686a955a9be24d316f1362bf21 2.1.1 " ) ) ; // LCOV_EXCL_LINE
}
break ;
}
}
}
/// constructor for strings
json_value ( const string_t & value )
{
string = create < string_t > ( value ) ;
}
/// constructor for objects
json_value ( const object_t & value )
{
object = create < object_t > ( value ) ;
}
/// constructor for arrays
json_value ( const array_t & value )
{
array = create < array_t > ( value ) ;
}
} ;
/*!
@ brief checks the class invariants
This function asserts the class invariants . It needs to be called at the
end of every constructor to make sure that created objects respect the
invariant . Furthermore , it has to be called each time the type of a JSON
value is changed , because the invariant expresses a relationship between
@ a m_type and @ a m_value .
*/
void assert_invariant ( ) const
{
assert ( m_type ! = value_t : : object or m_value . object ! = nullptr ) ;
assert ( m_type ! = value_t : : array or m_value . array ! = nullptr ) ;
assert ( m_type ! = value_t : : string or m_value . string ! = nullptr ) ;
}
public :
//////////////////////////
// JSON parser callback //
//////////////////////////
/*!
@ brief JSON callback events
This enumeration lists the parser events that can trigger calling a
callback function of type @ ref parser_callback_t during parsing .
@ image html callback_events . png " Example when certain parse events are triggered "
@ since version 1.0 .0
*/
enum class parse_event_t : uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start ,
/// the parser read `}` and finished processing a JSON object
object_end ,
/// the parser read `[` and started to process a JSON array
array_start ,
/// the parser read `]` and finished processing a JSON array
array_end ,
/// the parser read a key of a value in an object
key ,
/// the parser finished reading a JSON value
value
} ;
/*!
@ brief per - element parser callback type
With a parser callback function , the result of parsing a JSON text can be
influenced . When passed to @ ref parse ( std : : istream & , const
parser_callback_t ) or @ ref parse ( const CharT , const parser_callback_t ) ,
it is called on certain events ( passed as @ ref parse_event_t via parameter
@ a event ) with a set recursion depth @ a depth and context JSON value
@ a parsed . The return value of the callback function is a boolean
indicating whether the element that emitted the callback shall be kept or
not .
We distinguish six scenarios ( determined by the event type ) in which the
callback function can be called . The following table describes the values
of the parameters @ a depth , @ a event , and @ a parsed .
parameter @ a event | description | parameter @ a depth | parameter @ a parsed
- - - - - - - - - - - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - -
parse_event_t : : object_start | the parser read ` { ` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
parse_event_t : : key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
parse_event_t : : object_end | the parser read ` } ` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
parse_event_t : : array_start | the parser read ` [ ` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
parse_event_t : : array_end | the parser read ` ] ` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
parse_event_t : : value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
@ image html callback_events . png " Example when certain parse events are triggered "
Discarding a value ( i . e . , returning ` false ` ) has different effects
depending on the context in which function was called :
- Discarded values in structured types are skipped . That is , the parser
will behave as if the discarded value was never read .
- In case a value outside a structured type is skipped , it is replaced
with ` null ` . This case happens if the top - level element is skipped .
@ param [ in ] depth the depth of the recursion during parsing
@ param [ in ] event an event of type parse_event_t indicating the context in
the callback function has been called
@ param [ in , out ] parsed the current intermediate parse result ; note that
writing to this value has no effect for parse_event_t : : key events
@ return Whether the JSON value which called the function during parsing
should be kept ( ` true ` ) or not ( ` false ` ) . In the latter case , it is either
skipped completely or replaced by an empty discarded object .
@ sa @ ref parse ( std : : istream & , parser_callback_t ) or
@ ref parse ( const CharT , const parser_callback_t ) for examples
@ since version 1.0 .0
*/
using parser_callback_t = std : : function < bool ( int depth ,
parse_event_t event ,
basic_json & parsed ) > ;
//////////////////
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@ brief create an empty value with a given type
Create an empty JSON value with a given type . The value will be default
initialized with an empty value which depends on the type :
Value type | initial value
- - - - - - - - - - - | - - - - - - - - - - - - -
null | ` null `
boolean | ` false `
string | ` " " `
number | ` 0 `
object | ` { } `
array | ` [ ] `
@ param [ in ] value_type the type of the value to create
@ complexity Constant .
@ liveexample { The following code shows the constructor for different @ ref
value_t values , basic_json__value_t }
@ since version 1.0 .0
*/
basic_json ( const value_t value_type )
: m_type ( value_type ) , m_value ( value_type )
{
assert_invariant ( ) ;
}
/*!
@ brief create a null object
Create a ` null ` JSON value . It either takes a null pointer as parameter
( explicitly creating ` null ` ) or no parameter ( implicitly creating ` null ` ) .
The passed null pointer itself is not read - - it is only used to choose
the right constructor .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this constructor never throws
exceptions .
@ liveexample { The following code shows the constructor with and without a
null pointer parameter . , basic_json__nullptr_t }
@ since version 1.0 .0
*/
basic_json ( std : : nullptr_t = nullptr ) noexcept
: basic_json ( value_t : : null )
{
assert_invariant ( ) ;
}
/*!
@ brief create a JSON value
This is a " catch all " constructor for all compatible JSON types ; that is ,
types for which a ` to_json ( ) ` method exsits . The constructor forwards the
parameter @ a val to that method ( to ` json_serializer < U > : : to_json ` method
with ` U = uncvref_t < CompatibleType > ` , to be exact ) .
Template type @ a CompatibleType includes , but is not limited to , the
following types :
- * * arrays * * : @ ref array_t and all kinds of compatible containers such as
` std : : vector ` , ` std : : deque ` , ` std : : list ` , ` std : : forward_list ` ,
` std : : array ` , ` std : : set ` , ` std : : unordered_set ` , ` std : : multiset ` , and
` unordered_multiset ` with a ` value_type ` from which a @ ref basic_json
value can be constructed .
- * * objects * * : @ ref object_t and all kinds of compatible associative
containers such as ` std : : map ` , ` std : : unordered_map ` , ` std : : multimap ` ,
and ` std : : unordered_multimap ` with a ` key_type ` compatible to
@ ref string_t and a ` value_type ` from which a @ ref basic_json value can
be constructed .
- * * strings * * : @ ref string_t , string literals , and all compatible string
containers can be used .
- * * numbers * * : @ ref number_integer_t , @ ref number_unsigned_t ,
@ ref number_float_t , and all convertible number types such as ` int ` ,
` size_t ` , ` int64_t ` , ` float ` or ` double ` can be used .
- * * boolean * * : @ ref boolean_t / ` bool ` can be used .
See the examples below .
@ tparam CompatibleType a type such that :
- @ a CompatibleType is not derived from ` std : : istream ` ,
- @ a CompatibleType is not @ ref basic_json ( to avoid hijacking copy / move
constructors ) ,
- @ a CompatibleType is not a @ ref basic_json nested type ( e . g . ,
@ ref json_pointer , @ ref iterator , etc . . . )
- @ ref @ ref json_serializer < U > has a
` to_json ( basic_json_t & , CompatibleType & & ) ` method
@ tparam U = ` uncvref_t < CompatibleType > `
@ param [ in ] val the value to be forwarded
@ complexity Usually linear in the size of the passed @ a val , also
depending on the implementation of the called ` to_json ( ) `
method .
@ throw what ` json_serializer < U > : : to_json ( ) ` throws
@ liveexample { The following code shows the constructor with several
compatible types . , basic_json__CompatibleType }
@ since version 2.1 .0
*/
template < typename CompatibleType , typename U = detail : : uncvref_t < CompatibleType > ,
detail : : enable_if_t < not std : : is_base_of < std : : istream , U > : : value and
not std : : is_same < U , basic_json_t > : : value and
not detail : : is_basic_json_nested_type <
basic_json_t , U > : : value and
detail : : has_to_json < basic_json , U > : : value ,
int > = 0 >
basic_json ( CompatibleType & & val ) noexcept ( noexcept ( JSONSerializer < U > : : to_json (
std : : declval < basic_json_t & > ( ) , std : : forward < CompatibleType > ( val ) ) ) )
{
JSONSerializer < U > : : to_json ( * this , std : : forward < CompatibleType > ( val ) ) ;
assert_invariant ( ) ;
}
/*!
@ brief create a container ( array or object ) from an initializer list
Creates a JSON value of type array or object from the passed initializer
list @ a init . In case @ a type_deduction is ` true ` ( default ) , the type of
the JSON value to be created is deducted from the initializer list @ a init
according to the following rules :
1. If the list is empty , an empty JSON object value ` { } ` is created .
2. If the list consists of pairs whose first element is a string , a JSON
object value is created where the first elements of the pairs are
treated as keys and the second elements are as values .
3. In all other cases , an array is created .
The rules aim to create the best fit between a C + + initializer list and
JSON values . The rationale is as follows :
1. The empty initializer list is written as ` { } ` which is exactly an empty
JSON object .
2. C + + has now way of describing mapped types other than to list a list of
pairs . As JSON requires that keys must be of type string , rule 2 is the
weakest constraint one can pose on initializer lists to interpret them
as an object .
3. In all other cases , the initializer list could not be interpreted as
JSON object type , so interpreting it as JSON array type is safe .
With the rules described above , the following JSON values cannot be
expressed by an initializer list :
- the empty array ( ` [ ] ` ) : use @ ref array ( std : : initializer_list < basic_json > )
with an empty initializer list in this case
- arrays whose elements satisfy rule 2 : use @ ref
array ( std : : initializer_list < basic_json > ) with the same initializer list
in this case
@ note When used without parentheses around an empty initializer list , @ ref
basic_json ( ) is called instead of this function , yielding the JSON null
value .
@ param [ in ] init initializer list with JSON values
@ param [ in ] type_deduction internal parameter ; when set to ` true ` , the type
of the JSON value is deducted from the initializer list @ a init ; when set
to ` false ` , the type provided via @ a manual_type is forced . This mode is
used by the functions @ ref array ( std : : initializer_list < basic_json > ) and
@ ref object ( std : : initializer_list < basic_json > ) .
@ param [ in ] manual_type internal parameter ; when @ a type_deduction is set
to ` false ` , the created JSON value will use the provided type ( only @ ref
value_t : : array and @ ref value_t : : object are valid ) ; when @ a type_deduction
is set to ` true ` , this parameter has no effect
@ throw type_error .301 if @ a type_deduction is ` false ` , @ a manual_type is
` value_t : : object ` , but @ a init contains an element which is not a pair
whose first element is a string . In this case , the constructor could not
create an object . If @ a type_deduction would have be ` true ` , an array
would have been created . See @ ref object ( std : : initializer_list < basic_json > )
for an example .
@ complexity Linear in the size of the initializer list @ a init .
@ liveexample { The example below shows how JSON values are created from
initializer lists . , basic_json__list_init_t }
@ sa @ ref array ( std : : initializer_list < basic_json > ) - - create a JSON array
value from an initializer list
@ sa @ ref object ( std : : initializer_list < basic_json > ) - - create a JSON object
value from an initializer list
@ since version 1.0 .0
*/
basic_json ( std : : initializer_list < basic_json > init ,
bool type_deduction = true ,
value_t manual_type = value_t : : array )
{
// check if each element is an array with two elements whose first
// element is a string
bool is_an_object = std : : all_of ( init . begin ( ) , init . end ( ) ,
[ ] ( const basic_json & element )
{
return element . is_array ( ) and element . size ( ) = = 2 and element [ 0 ] . is_string ( ) ;
} ) ;
// adjust type if type deduction is not wanted
if ( not type_deduction )
{
// if array is wanted, do not create an object though possible
if ( manual_type = = value_t : : array )
{
is_an_object = false ;
}
// if object is wanted but impossible, throw an exception
if ( manual_type = = value_t : : object and not is_an_object )
{
JSON_THROW ( type_error : : create ( 301 , " cannot create object from initializer list " ) ) ;
}
}
if ( is_an_object )
{
// the initializer list is a list of pairs -> create object
m_type = value_t : : object ;
m_value = value_t : : object ;
std : : for_each ( init . begin ( ) , init . end ( ) , [ this ] ( const basic_json & element )
{
m_value . object - > emplace ( * ( element [ 0 ] . m_value . string ) , element [ 1 ] ) ;
} ) ;
}
else
{
// the initializer list describes an array -> create array
m_type = value_t : : array ;
m_value . array = create < array_t > ( init ) ;
}
assert_invariant ( ) ;
}
/*!
@ brief explicitly create an array from an initializer list
Creates a JSON array value from a given initializer list . That is , given a
list of values ` a , b , c ` , creates the JSON value ` [ a , b , c ] ` . If the
initializer list is empty , the empty array ` [ ] ` is created .
@ note This function is only needed to express two edge cases that cannot
be realized with the initializer list constructor ( @ ref
basic_json ( std : : initializer_list < basic_json > , bool , value_t ) ) . These cases
are :
1. creating an array whose elements are all pairs whose first element is a
string - - in this case , the initializer list constructor would create an
object , taking the first elements as keys
2. creating an empty array - - passing the empty initializer list to the
initializer list constructor yields an empty object
@ param [ in ] init initializer list with JSON values to create an array from
( optional )
@ return JSON array value
@ complexity Linear in the size of @ a init .
@ liveexample { The following code shows an example for the ` array `
function . , array }
@ sa @ ref basic_json ( std : : initializer_list < basic_json > , bool , value_t ) - -
create a JSON value from an initializer list
@ sa @ ref object ( std : : initializer_list < basic_json > ) - - create a JSON object
value from an initializer list
@ since version 1.0 .0
*/
static basic_json array ( std : : initializer_list < basic_json > init =
std : : initializer_list < basic_json > ( ) )
{
return basic_json ( init , false , value_t : : array ) ;
}
/*!
@ brief explicitly create an object from an initializer list
Creates a JSON object value from a given initializer list . The initializer
lists elements must be pairs , and their first elements must be strings . If
the initializer list is empty , the empty object ` { } ` is created .
@ note This function is only added for symmetry reasons . In contrast to the
related function @ ref array ( std : : initializer_list < basic_json > ) , there are
no cases which can only be expressed by this function . That is , any
initializer list @ a init can also be passed to the initializer list
constructor @ ref basic_json ( std : : initializer_list < basic_json > , bool , value_t ) .
@ param [ in ] init initializer list to create an object from ( optional )
@ return JSON object value
@ throw type_error .301 if @ a init is not a list of pairs whose first
elements are strings . In this case , no object can be created . When such a
value is passed to @ ref basic_json ( std : : initializer_list < basic_json > , bool , value_t ) ,
an array would have been created from the passed initializer list @ a init .
See example below .
@ complexity Linear in the size of @ a init .
@ liveexample { The following code shows an example for the ` object `
function . , object }
@ sa @ ref basic_json ( std : : initializer_list < basic_json > , bool , value_t ) - -
create a JSON value from an initializer list
@ sa @ ref array ( std : : initializer_list < basic_json > ) - - create a JSON array
value from an initializer list
@ since version 1.0 .0
*/
static basic_json object ( std : : initializer_list < basic_json > init =
std : : initializer_list < basic_json > ( ) )
{
return basic_json ( init , false , value_t : : object ) ;
}
/*!
@ brief construct an array with count copies of given value
Constructs a JSON array value by creating @ a cnt copies of a passed value .
In case @ a cnt is ` 0 ` , an empty array is created . As postcondition ,
` std : : distance ( begin ( ) , end ( ) ) = = cnt ` holds .
@ param [ in ] cnt the number of JSON copies of @ a val to create
@ param [ in ] val the JSON value to copy
@ complexity Linear in @ a cnt .
@ liveexample { The following code shows examples for the @ ref
basic_json ( size_type \ , const basic_json & )
constructor . , basic_json__size_type_basic_json }
@ since version 1.0 .0
*/
basic_json ( size_type cnt , const basic_json & val )
: m_type ( value_t : : array )
{
m_value . array = create < array_t > ( cnt , val ) ;
assert_invariant ( ) ;
}
/*!
@ brief construct a JSON container given an iterator range
Constructs the JSON value with the contents of the range ` [ first , last ) ` .
The semantics depends on the different types a JSON value can have :
- In case of primitive types ( number , boolean , or string ) , @ a first must
be ` begin ( ) ` and @ a last must be ` end ( ) ` . In this case , the value is
copied . Otherwise , invalid_iterator .204 is thrown .
- In case of structured types ( array , object ) , the constructor behaves as
similar versions for ` std : : vector ` .
- In case of a null type , invalid_iterator .206 is thrown .
@ tparam InputIT an input iterator type ( @ ref iterator or @ ref
const_iterator )
@ param [ in ] first begin of the range to copy from ( included )
@ param [ in ] last end of the range to copy from ( excluded )
@ pre Iterators @ a first and @ a last must be initialized . * * This
precondition is enforced with an assertion . * *
@ pre Range ` [ first , last ) ` is valid . Usually , this precondition cannot be
checked efficiently . Only certain edge cases are detected ; see the
description of the exceptions below .
@ throw invalid_iterator .201 if iterators @ a first and @ a last are not
compatible ( i . e . , do not belong to the same JSON value ) . In this case ,
the range ` [ first , last ) ` is undefined .
@ throw invalid_iterator .204 if iterators @ a first and @ a last belong to a
primitive type ( number , boolean , or string ) , but @ a first does not point
to the first element any more . In this case , the range ` [ first , last ) ` is
undefined . See example code below .
@ throw invalid_iterator .206 if iterators @ a first and @ a last belong to a
null value . In this case , the range ` [ first , last ) ` is undefined .
@ complexity Linear in distance between @ a first and @ a last .
@ liveexample { The example below shows several ways to create JSON values by
specifying a subrange with iterators . , basic_json__InputIt_InputIt }
@ since version 1.0 .0
*/
template < class InputIT , typename std : : enable_if <
std : : is_same < InputIT , typename basic_json_t : : iterator > : : value or
std : : is_same < InputIT , typename basic_json_t : : const_iterator > : : value , int > : : type = 0 >
basic_json ( InputIT first , InputIT last )
{
assert ( first . m_object ! = nullptr ) ;
assert ( last . m_object ! = nullptr ) ;
// make sure iterator fits the current value
if ( first . m_object ! = last . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 201 , " iterators are not compatible " ) ) ;
}
// copy type from first iterator
m_type = first . m_object - > m_type ;
// check if iterator range is complete for primitive values
switch ( m_type )
{
case value_t : : boolean :
case value_t : : number_float :
case value_t : : number_integer :
case value_t : : number_unsigned :
case value_t : : string :
{
if ( not first . m_it . primitive_iterator . is_begin ( ) or not last . m_it . primitive_iterator . is_end ( ) )
{
JSON_THROW ( invalid_iterator : : create ( 204 , " iterators out of range " ) ) ;
}
break ;
}
default :
{
break ;
}
}
switch ( m_type )
{
case value_t : : number_integer :
{
m_value . number_integer = first . m_object - > m_value . number_integer ;
break ;
}
case value_t : : number_unsigned :
{
m_value . number_unsigned = first . m_object - > m_value . number_unsigned ;
break ;
}
case value_t : : number_float :
{
m_value . number_float = first . m_object - > m_value . number_float ;
break ;
}
case value_t : : boolean :
{
m_value . boolean = first . m_object - > m_value . boolean ;
break ;
}
case value_t : : string :
{
m_value = * first . m_object - > m_value . string ;
break ;
}
case value_t : : object :
{
m_value . object = create < object_t > ( first . m_it . object_iterator ,
last . m_it . object_iterator ) ;
break ;
}
case value_t : : array :
{
m_value . array = create < array_t > ( first . m_it . array_iterator ,
last . m_it . array_iterator ) ;
break ;
}
default :
{
JSON_THROW ( invalid_iterator : : create ( 206 , " cannot construct with iterators from " +
first . m_object - > type_name ( ) ) ) ;
}
}
assert_invariant ( ) ;
}
///////////////////////////////////////
// other constructors and destructor //
///////////////////////////////////////
/*!
@ brief copy constructor
Creates a copy of a given JSON value .
@ param [ in ] other the JSON value to copy
@ complexity Linear in the size of @ a other .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is linear .
- As postcondition , it holds : ` other = = basic_json ( other ) ` .
@ liveexample { The following code shows an example for the copy
constructor . , basic_json__basic_json }
@ since version 1.0 .0
*/
basic_json ( const basic_json & other )
: m_type ( other . m_type )
{
// check of passed value is valid
other . assert_invariant ( ) ;
switch ( m_type )
{
case value_t : : object :
{
m_value = * other . m_value . object ;
break ;
}
case value_t : : array :
{
m_value = * other . m_value . array ;
break ;
}
case value_t : : string :
{
m_value = * other . m_value . string ;
break ;
}
case value_t : : boolean :
{
m_value = other . m_value . boolean ;
break ;
}
case value_t : : number_integer :
{
m_value = other . m_value . number_integer ;
break ;
}
case value_t : : number_unsigned :
{
m_value = other . m_value . number_unsigned ;
break ;
}
case value_t : : number_float :
{
m_value = other . m_value . number_float ;
break ;
}
default :
{
break ;
}
}
assert_invariant ( ) ;
}
/*!
@ brief move constructor
Move constructor . Constructs a JSON value with the contents of the given
value @ a other using move semantics . It " steals " the resources from @ a
other and leaves it as JSON null value .
@ param [ in , out ] other value to move to this object
@ post @ a other is a JSON null value
@ complexity Constant .
@ liveexample { The code below shows the move constructor explicitly called
via std : : move . , basic_json__moveconstructor }
@ since version 1.0 .0
*/
basic_json ( basic_json & & other ) noexcept
: m_type ( std : : move ( other . m_type ) ) ,
m_value ( std : : move ( other . m_value ) )
{
// check that passed value is valid
other . assert_invariant ( ) ;
// invalidate payload
other . m_type = value_t : : null ;
other . m_value = { } ;
assert_invariant ( ) ;
}
/*!
@ brief copy assignment
Copy assignment operator . Copies a JSON value via the " copy and swap "
strategy : It is expressed in terms of the copy constructor , destructor ,
and the swap ( ) member function .
@ param [ in ] other value to copy from
@ complexity Linear .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is linear .
@ liveexample { The code below shows and example for the copy assignment . It
creates a copy of value ` a ` which is then swapped with ` b ` . Finally \ , the
copy of ` a ` ( which is the null value after the swap ) is
destroyed . , basic_json__copyassignment }
@ since version 1.0 .0
*/
reference & operator = ( basic_json other ) noexcept (
std : : is_nothrow_move_constructible < value_t > : : value and
std : : is_nothrow_move_assignable < value_t > : : value and
std : : is_nothrow_move_constructible < json_value > : : value and
std : : is_nothrow_move_assignable < json_value > : : value
)
{
// check that passed value is valid
other . assert_invariant ( ) ;
using std : : swap ;
swap ( m_type , other . m_type ) ;
swap ( m_value , other . m_value ) ;
assert_invariant ( ) ;
return * this ;
}
/*!
@ brief destructor
Destroys the JSON value and frees all allocated memory .
@ complexity Linear .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is linear .
- All stored elements are destroyed and all memory is freed .
@ since version 1.0 .0
*/
~ basic_json ( )
{
assert_invariant ( ) ;
switch ( m_type )
{
case value_t : : object :
{
AllocatorType < object_t > alloc ;
alloc . destroy ( m_value . object ) ;
alloc . deallocate ( m_value . object , 1 ) ;
break ;
}
case value_t : : array :
{
AllocatorType < array_t > alloc ;
alloc . destroy ( m_value . array ) ;
alloc . deallocate ( m_value . array , 1 ) ;
break ;
}
case value_t : : string :
{
AllocatorType < string_t > alloc ;
alloc . destroy ( m_value . string ) ;
alloc . deallocate ( m_value . string , 1 ) ;
break ;
}
default :
{
// all other types need no specific destructor
break ;
}
}
}
/// @}
public :
///////////////////////
// object inspection //
///////////////////////
/// @name object inspection
/// Functions to inspect the type of a JSON value.
/// @{
/*!
@ brief serialization
Serialization function for JSON values . The function tries to mimic
Python ' s ` json . dumps ( ) ` function , and currently supports its @ a indent
parameter .
@ param [ in ] indent If indent is nonnegative , then array elements and object
members will be pretty - printed with that indent level . An indent level of
` 0 ` will only insert newlines . ` - 1 ` ( the default ) selects the most compact
representation .
@ param [ in ] indent_char The character to use for indentation of @ a indent is
greate than ` 0 ` . The default is ` ` ( space ) .
@ return string containing the serialization of the JSON value
@ complexity Linear .
@ liveexample { The following example shows the effect of different @ a indent
parameters to the result of the serialization . , dump }
@ see https : //docs.python.org/2/library/json.html#json.dump
@ since version 1.0 .0 ; indentaction character added in version 3.0 .0
*/
string_t dump ( const int indent = - 1 , const char indent_char = ' ' ) const
{
string_t result ;
serializer s ( output_adapter < char > : : create ( result ) , indent_char ) ;
if ( indent > = 0 )
{
s . dump ( * this , true , static_cast < unsigned int > ( indent ) ) ;
}
else
{
s . dump ( * this , false , 0 ) ;
}
return result ;
}
/*!
@ brief return the type of the JSON value ( explicit )
Return the type of the JSON value as a value from the @ ref value_t
enumeration .
@ return the type of the JSON value
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` type ( ) ` for all JSON
types . , type }
@ since version 1.0 .0
*/
constexpr value_t type ( ) const noexcept
{
return m_type ;
}
/*!
@ brief return whether type is primitive
This function returns true iff the JSON type is primitive ( string , number ,
boolean , or null ) .
@ return ` true ` if type is primitive ( string , number , boolean , or null ) ,
` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_primitive ( ) ` for all JSON
types . , is_primitive }
@ sa @ ref is_structured ( ) - - returns whether JSON value is structured
@ sa @ ref is_null ( ) - - returns whether JSON value is ` null `
@ sa @ ref is_string ( ) - - returns whether JSON value is a string
@ sa @ ref is_boolean ( ) - - returns whether JSON value is a boolean
@ sa @ ref is_number ( ) - - returns whether JSON value is a number
@ since version 1.0 .0
*/
constexpr bool is_primitive ( ) const noexcept
{
return is_null ( ) or is_string ( ) or is_boolean ( ) or is_number ( ) ;
}
/*!
@ brief return whether type is structured
This function returns true iff the JSON type is structured ( array or
object ) .
@ return ` true ` if type is structured ( array or object ) , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_structured ( ) ` for all JSON
types . , is_structured }
@ sa @ ref is_primitive ( ) - - returns whether value is primitive
@ sa @ ref is_array ( ) - - returns whether value is an array
@ sa @ ref is_object ( ) - - returns whether value is an object
@ since version 1.0 .0
*/
constexpr bool is_structured ( ) const noexcept
{
return is_array ( ) or is_object ( ) ;
}
/*!
@ brief return whether value is null
This function returns true iff the JSON value is null .
@ return ` true ` if type is null , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_null ( ) ` for all JSON
types . , is_null }
@ since version 1.0 .0
*/
constexpr bool is_null ( ) const noexcept
{
return m_type = = value_t : : null ;
}
/*!
@ brief return whether value is a boolean
This function returns true iff the JSON value is a boolean .
@ return ` true ` if type is boolean , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_boolean ( ) ` for all JSON
types . , is_boolean }
@ since version 1.0 .0
*/
constexpr bool is_boolean ( ) const noexcept
{
return m_type = = value_t : : boolean ;
}
/*!
@ brief return whether value is a number
This function returns true iff the JSON value is a number . This includes
both integer and floating - point values .
@ return ` true ` if type is number ( regardless whether integer , unsigned
integer or floating - type ) , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_number ( ) ` for all JSON
types . , is_number }
@ sa @ ref is_number_integer ( ) - - check if value is an integer or unsigned
integer number
@ sa @ ref is_number_unsigned ( ) - - check if value is an unsigned integer
number
@ sa @ ref is_number_float ( ) - - check if value is a floating - point number
@ since version 1.0 .0
*/
constexpr bool is_number ( ) const noexcept
{
return is_number_integer ( ) or is_number_float ( ) ;
}
/*!
@ brief return whether value is an integer number
This function returns true iff the JSON value is an integer or unsigned
integer number . This excludes floating - point values .
@ return ` true ` if type is an integer or unsigned integer number , ` false `
otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_number_integer ( ) ` for all
JSON types . , is_number_integer }
@ sa @ ref is_number ( ) - - check if value is a number
@ sa @ ref is_number_unsigned ( ) - - check if value is an unsigned integer
number
@ sa @ ref is_number_float ( ) - - check if value is a floating - point number
@ since version 1.0 .0
*/
constexpr bool is_number_integer ( ) const noexcept
{
return m_type = = value_t : : number_integer or m_type = = value_t : : number_unsigned ;
}
/*!
@ brief return whether value is an unsigned integer number
This function returns true iff the JSON value is an unsigned integer
number . This excludes floating - point and ( signed ) integer values .
@ return ` true ` if type is an unsigned integer number , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_number_unsigned ( ) ` for all
JSON types . , is_number_unsigned }
@ sa @ ref is_number ( ) - - check if value is a number
@ sa @ ref is_number_integer ( ) - - check if value is an integer or unsigned
integer number
@ sa @ ref is_number_float ( ) - - check if value is a floating - point number
@ since version 2.0 .0
*/
constexpr bool is_number_unsigned ( ) const noexcept
{
return m_type = = value_t : : number_unsigned ;
}
/*!
@ brief return whether value is a floating - point number
This function returns true iff the JSON value is a floating - point number .
This excludes integer and unsigned integer values .
@ return ` true ` if type is a floating - point number , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_number_float ( ) ` for all
JSON types . , is_number_float }
@ sa @ ref is_number ( ) - - check if value is number
@ sa @ ref is_number_integer ( ) - - check if value is an integer number
@ sa @ ref is_number_unsigned ( ) - - check if value is an unsigned integer
number
@ since version 1.0 .0
*/
constexpr bool is_number_float ( ) const noexcept
{
return m_type = = value_t : : number_float ;
}
/*!
@ brief return whether value is an object
This function returns true iff the JSON value is an object .
@ return ` true ` if type is object , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_object ( ) ` for all JSON
types . , is_object }
@ since version 1.0 .0
*/
constexpr bool is_object ( ) const noexcept
{
return m_type = = value_t : : object ;
}
/*!
@ brief return whether value is an array
This function returns true iff the JSON value is an array .
@ return ` true ` if type is array , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_array ( ) ` for all JSON
types . , is_array }
@ since version 1.0 .0
*/
constexpr bool is_array ( ) const noexcept
{
return m_type = = value_t : : array ;
}
/*!
@ brief return whether value is a string
This function returns true iff the JSON value is a string .
@ return ` true ` if type is string , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_string ( ) ` for all JSON
types . , is_string }
@ since version 1.0 .0
*/
constexpr bool is_string ( ) const noexcept
{
return m_type = = value_t : : string ;
}
/*!
@ brief return whether value is discarded
This function returns true iff the JSON value was discarded during parsing
with a callback function ( see @ ref parser_callback_t ) .
@ note This function will always be ` false ` for JSON values after parsing .
That is , discarded values can only occur during parsing , but will be
removed when inside a structured value or replaced by null in other cases .
@ return ` true ` if type is discarded , ` false ` otherwise .
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies ` is_discarded ( ) ` for all JSON
types . , is_discarded }
@ since version 1.0 .0
*/
constexpr bool is_discarded ( ) const noexcept
{
return m_type = = value_t : : discarded ;
}
/*!
@ brief return the type of the JSON value ( implicit )
Implicitly return the type of the JSON value as a value from the @ ref
value_t enumeration .
@ return the type of the JSON value
@ complexity Constant .
@ exceptionsafety No - throw guarantee : this member function never throws
exceptions .
@ liveexample { The following code exemplifies the @ ref value_t operator for
all JSON types . , operator__value_t }
@ since version 1.0 .0
*/
constexpr operator value_t ( ) const noexcept
{
return m_type ;
}
/// @}
private :
//////////////////
// value access //
//////////////////
/// get a boolean (explicit)
boolean_t get_impl ( boolean_t * /*unused*/ ) const
{
if ( is_boolean ( ) )
{
return m_value . boolean ;
}
JSON_THROW ( type_error : : create ( 302 , " type must be boolean, but is " + type_name ( ) ) ) ;
}
/// get a pointer to the value (object)
object_t * get_impl_ptr ( object_t * /*unused*/ ) noexcept
{
return is_object ( ) ? m_value . object : nullptr ;
}
/// get a pointer to the value (object)
constexpr const object_t * get_impl_ptr ( const object_t * /*unused*/ ) const noexcept
{
return is_object ( ) ? m_value . object : nullptr ;
}
/// get a pointer to the value (array)
array_t * get_impl_ptr ( array_t * /*unused*/ ) noexcept
{
return is_array ( ) ? m_value . array : nullptr ;
}
/// get a pointer to the value (array)
constexpr const array_t * get_impl_ptr ( const array_t * /*unused*/ ) const noexcept
{
return is_array ( ) ? m_value . array : nullptr ;
}
/// get a pointer to the value (string)
string_t * get_impl_ptr ( string_t * /*unused*/ ) noexcept
{
return is_string ( ) ? m_value . string : nullptr ;
}
/// get a pointer to the value (string)
constexpr const string_t * get_impl_ptr ( const string_t * /*unused*/ ) const noexcept
{
return is_string ( ) ? m_value . string : nullptr ;
}
/// get a pointer to the value (boolean)
boolean_t * get_impl_ptr ( boolean_t * /*unused*/ ) noexcept
{
return is_boolean ( ) ? & m_value . boolean : nullptr ;
}
/// get a pointer to the value (boolean)
constexpr const boolean_t * get_impl_ptr ( const boolean_t * /*unused*/ ) const noexcept
{
return is_boolean ( ) ? & m_value . boolean : nullptr ;
}
/// get a pointer to the value (integer number)
number_integer_t * get_impl_ptr ( number_integer_t * /*unused*/ ) noexcept
{
return is_number_integer ( ) ? & m_value . number_integer : nullptr ;
}
/// get a pointer to the value (integer number)
constexpr const number_integer_t * get_impl_ptr ( const number_integer_t * /*unused*/ ) const noexcept
{
return is_number_integer ( ) ? & m_value . number_integer : nullptr ;
}
/// get a pointer to the value (unsigned number)
number_unsigned_t * get_impl_ptr ( number_unsigned_t * /*unused*/ ) noexcept
{
return is_number_unsigned ( ) ? & m_value . number_unsigned : nullptr ;
}
/// get a pointer to the value (unsigned number)
constexpr const number_unsigned_t * get_impl_ptr ( const number_unsigned_t * /*unused*/ ) const noexcept
{
return is_number_unsigned ( ) ? & m_value . number_unsigned : nullptr ;
}
/// get a pointer to the value (floating-point number)
number_float_t * get_impl_ptr ( number_float_t * /*unused*/ ) noexcept
{
return is_number_float ( ) ? & m_value . number_float : nullptr ;
}
/// get a pointer to the value (floating-point number)
constexpr const number_float_t * get_impl_ptr ( const number_float_t * /*unused*/ ) const noexcept
{
return is_number_float ( ) ? & m_value . number_float : nullptr ;
}
/*!
@ brief helper function to implement get_ref ( )
This funcion helps to implement get_ref ( ) without code duplication for
const and non - const overloads
@ tparam ThisType will be deduced as ` basic_json ` or ` const basic_json `
@ throw type_error .303 if ReferenceType does not match underlying value
type of the current JSON
*/
template < typename ReferenceType , typename ThisType >
static ReferenceType get_ref_impl ( ThisType & obj )
{
// helper type
using PointerType = typename std : : add_pointer < ReferenceType > : : type ;
// delegate the call to get_ptr<>()
auto ptr = obj . template get_ptr < PointerType > ( ) ;
if ( ptr ! = nullptr )
{
return * ptr ;
}
JSON_THROW ( type_error : : create ( 303 , " incompatible ReferenceType for get_ref, actual type is " + obj . type_name ( ) ) ) ;
}
public :
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@ brief get special - case overload
This overloads avoids a lot of template boilerplate , it can be seen as the
identity method
@ tparam BasicJsonType = = @ ref basic_json
@ return a copy of * this
@ complexity Constant .
@ since version 2.1 .0
*/
template <
typename BasicJsonType ,
detail : : enable_if_t < std : : is_same < typename std : : remove_const < BasicJsonType > : : type ,
basic_json_t > : : value ,
int > = 0 >
basic_json get ( ) const
{
return * this ;
}
/*!
@ brief get a value ( explicit )
Explicit type conversion between the JSON value and a compatible value
which is [ CopyConstructible ] ( http : //en.cppreference.com/w/cpp/concept/CopyConstructible)
and [ DefaultConstructible ] ( http : //en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ ref json_serializer < ValueType >
` from_json ( ) ` method .
The function is equivalent to executing
@ code { . cpp }
ValueType ret ;
JSONSerializer < ValueType > : : from_json ( * this , ret ) ;
return ret ;
@ endcode
This overloads is chosen if :
- @ a ValueType is not @ ref basic_json ,
- @ ref json_serializer < ValueType > has a ` from_json ( ) ` method of the form
` void from_json ( const basic_json & , ValueType & ) ` , and
- @ ref json_serializer < ValueType > does not have a ` from_json ( ) ` method of
the form ` ValueType from_json ( const basic_json & ) `
@ tparam ValueTypeCV the provided value type
@ tparam ValueType the returned value type
@ return copy of the JSON value , converted to @ a ValueType
@ throw what @ ref json_serializer < ValueType > ` from_json ( ) ` method throws
@ liveexample { The example below shows several conversions from JSON values
to other types . There a few things to note : ( 1 ) Floating - point numbers can
be converted to integers \ , ( 2 ) A JSON array can be converted to a standard
` std : : vector < short > ` \ , ( 3 ) A JSON object can be converted to C + +
associative containers such as ` std : : unordered_map < std : : string \ ,
json > ` . , get__ValueType_const }
@ since version 2.1 .0
*/
template <
typename ValueTypeCV ,
typename ValueType = detail : : uncvref_t < ValueTypeCV > ,
detail : : enable_if_t <
not std : : is_same < basic_json_t , ValueType > : : value and
detail : : has_from_json < basic_json_t , ValueType > : : value and
not detail : : has_non_default_from_json < basic_json_t , ValueType > : : value ,
int > = 0 >
ValueType get ( ) const noexcept ( noexcept (
JSONSerializer < ValueType > : : from_json ( std : : declval < const basic_json_t & > ( ) , std : : declval < ValueType & > ( ) ) ) )
{
// we cannot static_assert on ValueTypeCV being non-const, because
// there is support for get<const basic_json_t>(), which is why we
// still need the uncvref
static_assert ( not std : : is_reference < ValueTypeCV > : : value ,
" get() cannot be used with reference types, you might want to use get_ref() " ) ;
static_assert ( std : : is_default_constructible < ValueType > : : value ,
" types must be DefaultConstructible when used with get() " ) ;
ValueType ret ;
JSONSerializer < ValueType > : : from_json ( * this , ret ) ;
return ret ;
}
/*!
@ brief get a value ( explicit ) ; special case
Explicit type conversion between the JSON value and a compatible value
which is * * not * * [ CopyConstructible ] ( http : //en.cppreference.com/w/cpp/concept/CopyConstructible)
and * * not * * [ DefaultConstructible ] ( http : //en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ ref json_serializer < ValueType >
` from_json ( ) ` method .
The function is equivalent to executing
@ code { . cpp }
return JSONSerializer < ValueTypeCV > : : from_json ( * this ) ;
@ endcode
This overloads is chosen if :
- @ a ValueType is not @ ref basic_json and
- @ ref json_serializer < ValueType > has a ` from_json ( ) ` method of the form
` ValueType from_json ( const basic_json & ) `
@ note If @ ref json_serializer < ValueType > has both overloads of
` from_json ( ) ` , this one is chosen .
@ tparam ValueTypeCV the provided value type
@ tparam ValueType the returned value type
@ return copy of the JSON value , converted to @ a ValueType
@ throw what @ ref json_serializer < ValueType > ` from_json ( ) ` method throws
@ since version 2.1 .0
*/
template <
typename ValueTypeCV ,
typename ValueType = detail : : uncvref_t < ValueTypeCV > ,
detail : : enable_if_t < not std : : is_same < basic_json_t , ValueType > : : value and
detail : : has_non_default_from_json < basic_json_t ,
ValueType > : : value , int > = 0 >
ValueType get ( ) const noexcept ( noexcept (
JSONSerializer < ValueTypeCV > : : from_json ( std : : declval < const basic_json_t & > ( ) ) ) )
{
static_assert ( not std : : is_reference < ValueTypeCV > : : value ,
" get() cannot be used with reference types, you might want to use get_ref() " ) ;
return JSONSerializer < ValueTypeCV > : : from_json ( * this ) ;
}
/*!
@ brief get a pointer value ( explicit )
Explicit pointer access to the internally stored JSON value . No copies are
made .
@ warning The pointer becomes invalid if the underlying JSON object
changes .
@ tparam PointerType pointer type ; must be a pointer to @ ref array_t , @ ref
object_t , @ ref string_t , @ ref boolean_t , @ ref number_integer_t ,
@ ref number_unsigned_t , or @ ref number_float_t .
@ return pointer to the internally stored JSON value if the requested
pointer type @ a PointerType fits to the JSON value ; ` nullptr ` otherwise
@ complexity Constant .
@ liveexample { The example below shows how pointers to internal values of a
JSON value can be requested . Note that no type conversions are made and a
` nullptr ` is returned if the value and the requested pointer type does not
match . , get__PointerType }
@ sa @ ref get_ptr ( ) for explicit pointer - member access
@ since version 1.0 .0
*/
template < typename PointerType , typename std : : enable_if <
std : : is_pointer < PointerType > : : value , int > : : type = 0 >
PointerType get ( ) noexcept
{
// delegate the call to get_ptr
return get_ptr < PointerType > ( ) ;
}
/*!
@ brief get a pointer value ( explicit )
@ copydoc get ( )
*/
template < typename PointerType , typename std : : enable_if <
std : : is_pointer < PointerType > : : value , int > : : type = 0 >
constexpr const PointerType get ( ) const noexcept
{
// delegate the call to get_ptr
return get_ptr < PointerType > ( ) ;
}
/*!
@ brief get a pointer value ( implicit )
Implicit pointer access to the internally stored JSON value . No copies are
made .
@ warning Writing data to the pointee of the result yields an undefined
state .
@ tparam PointerType pointer type ; must be a pointer to @ ref array_t , @ ref
object_t , @ ref string_t , @ ref boolean_t , @ ref number_integer_t ,
@ ref number_unsigned_t , or @ ref number_float_t . Enforced by a static
assertion .
@ return pointer to the internally stored JSON value if the requested
pointer type @ a PointerType fits to the JSON value ; ` nullptr ` otherwise
@ complexity Constant .
@ liveexample { The example below shows how pointers to internal values of a
JSON value can be requested . Note that no type conversions are made and a
` nullptr ` is returned if the value and the requested pointer type does not
match . , get_ptr }
@ since version 1.0 .0
*/
template < typename PointerType , typename std : : enable_if <
std : : is_pointer < PointerType > : : value , int > : : type = 0 >
PointerType get_ptr ( ) noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std : : remove_const < typename
std : : remove_pointer < typename
std : : remove_const < PointerType > : : type > : : type > : : type ;
// make sure the type matches the allowed types
static_assert (
std : : is_same < object_t , pointee_t > : : value
or std : : is_same < array_t , pointee_t > : : value
or std : : is_same < string_t , pointee_t > : : value
or std : : is_same < boolean_t , pointee_t > : : value
or std : : is_same < number_integer_t , pointee_t > : : value
or std : : is_same < number_unsigned_t , pointee_t > : : value
or std : : is_same < number_float_t , pointee_t > : : value
, " incompatible pointer type " ) ;
// delegate the call to get_impl_ptr<>()
return get_impl_ptr ( static_cast < PointerType > ( nullptr ) ) ;
}
/*!
@ brief get a pointer value ( implicit )
@ copydoc get_ptr ( )
*/
template < typename PointerType , typename std : : enable_if <
std : : is_pointer < PointerType > : : value and
std : : is_const < typename std : : remove_pointer < PointerType > : : type > : : value , int > : : type = 0 >
constexpr const PointerType get_ptr ( ) const noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std : : remove_const < typename
std : : remove_pointer < typename
std : : remove_const < PointerType > : : type > : : type > : : type ;
// make sure the type matches the allowed types
static_assert (
std : : is_same < object_t , pointee_t > : : value
or std : : is_same < array_t , pointee_t > : : value
or std : : is_same < string_t , pointee_t > : : value
or std : : is_same < boolean_t , pointee_t > : : value
or std : : is_same < number_integer_t , pointee_t > : : value
or std : : is_same < number_unsigned_t , pointee_t > : : value
or std : : is_same < number_float_t , pointee_t > : : value
, " incompatible pointer type " ) ;
// delegate the call to get_impl_ptr<>() const
return get_impl_ptr ( static_cast < const PointerType > ( nullptr ) ) ;
}
/*!
@ brief get a reference value ( implicit )
Implicit reference access to the internally stored JSON value . No copies
are made .
@ warning Writing data to the referee of the result yields an undefined
state .
@ tparam ReferenceType reference type ; must be a reference to @ ref array_t ,
@ ref object_t , @ ref string_t , @ ref boolean_t , @ ref number_integer_t , or
@ ref number_float_t . Enforced by static assertion .
@ return reference to the internally stored JSON value if the requested
reference type @ a ReferenceType fits to the JSON value ; throws
type_error .303 otherwise
@ throw type_error .303 in case passed type @ a ReferenceType is incompatible
with the stored JSON value ; see example below
@ complexity Constant .
@ liveexample { The example shows several calls to ` get_ref ( ) ` . , get_ref }
@ since version 1.1 .0
*/
template < typename ReferenceType , typename std : : enable_if <
std : : is_reference < ReferenceType > : : value , int > : : type = 0 >
ReferenceType get_ref ( )
{
// delegate call to get_ref_impl
return get_ref_impl < ReferenceType > ( * this ) ;
}
/*!
@ brief get a reference value ( implicit )
@ copydoc get_ref ( )
*/
template < typename ReferenceType , typename std : : enable_if <
std : : is_reference < ReferenceType > : : value and
std : : is_const < typename std : : remove_reference < ReferenceType > : : type > : : value , int > : : type = 0 >
ReferenceType get_ref ( ) const
{
// delegate call to get_ref_impl
return get_ref_impl < ReferenceType > ( * this ) ;
}
/*!
@ brief get a value ( implicit )
Implicit type conversion between the JSON value and a compatible value .
The call is realized by calling @ ref get ( ) const .
@ tparam ValueType non - pointer type compatible to the JSON value , for
instance ` int ` for JSON integer numbers , ` bool ` for JSON booleans , or
` std : : vector ` types for JSON arrays . The character type of @ ref string_t
as well as an initializer list of this type is excluded to avoid
ambiguities as these types implicitly convert to ` std : : string ` .
@ return copy of the JSON value , converted to type @ a ValueType
@ throw type_error .302 in case passed type @ a ValueType is incompatible
to the JSON value type ( e . g . , the JSON value is of type boolean , but a
string is requested ) ; see example below
@ complexity Linear in the size of the JSON value .
@ liveexample { The example below shows several conversions from JSON values
to other types . There a few things to note : ( 1 ) Floating - point numbers can
be converted to integers \ , ( 2 ) A JSON array can be converted to a standard
` std : : vector < short > ` \ , ( 3 ) A JSON object can be converted to C + +
associative containers such as ` std : : unordered_map < std : : string \ ,
json > ` . , operator__ValueType }
@ since version 1.0 .0
*/
template < typename ValueType , typename std : : enable_if <
not std : : is_pointer < ValueType > : : value and
not std : : is_same < ValueType , typename string_t : : value_type > : : value
# ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
and not std : : is_same < ValueType , std : : initializer_list < typename string_t : : value_type > > : : value
# endif
# if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_MSC_VER) && _MSC_VER >1900 && defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
and not std : : is_same < ValueType , typename std : : string_view > : : value
# endif
, int > : : type = 0 >
operator ValueType ( ) const
{
// delegate the call to get<>() const
return get < ValueType > ( ) ;
}
/// @}
////////////////////
// element access //
////////////////////
/// @name element access
/// Access to the JSON value.
/// @{
/*!
@ brief access specified array element with bounds checking
Returns a reference to the element at specified location @ a idx , with
bounds checking .
@ param [ in ] idx index of the element to access
@ return reference to the element at index @ a idx
@ throw type_error .304 if the JSON value is not an array ; in this case ,
calling ` at ` with an index makes no sense . See example below .
@ throw out_of_range .401 if the index @ a idx is out of range of the array ;
that is , ` idx > = size ( ) ` . See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Constant .
@ since version 1.0 .0
@ liveexample { The example below shows how array elements can be read and
written using ` at ( ) ` . It also demonstrates the different exceptions that
can be thrown . , at__size_type }
*/
reference at ( size_type idx )
{
// at only works for arrays
if ( is_array ( ) )
{
JSON_TRY
{
return m_value . array - > at ( idx ) ;
}
JSON_CATCH ( std : : out_of_range & )
{
// create better exception explanation
JSON_THROW ( out_of_range : : create ( 401 , " array index " + std : : to_string ( idx ) + " is out of range " ) ) ;
}
}
else
{
JSON_THROW ( type_error : : create ( 304 , " cannot use at() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief access specified array element with bounds checking
Returns a const reference to the element at specified location @ a idx ,
with bounds checking .
@ param [ in ] idx index of the element to access
@ return const reference to the element at index @ a idx
@ throw type_error .304 if the JSON value is not an array ; in this case ,
calling ` at ` with an index makes no sense . See example below .
@ throw out_of_range .401 if the index @ a idx is out of range of the array ;
that is , ` idx > = size ( ) ` . See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Constant .
@ since version 1.0 .0
@ liveexample { The example below shows how array elements can be read using
` at ( ) ` . It also demonstrates the different exceptions that can be thrown . ,
at__size_type_const }
*/
const_reference at ( size_type idx ) const
{
// at only works for arrays
if ( is_array ( ) )
{
JSON_TRY
{
return m_value . array - > at ( idx ) ;
}
JSON_CATCH ( std : : out_of_range & )
{
// create better exception explanation
JSON_THROW ( out_of_range : : create ( 401 , " array index " + std : : to_string ( idx ) + " is out of range " ) ) ;
}
}
else
{
JSON_THROW ( type_error : : create ( 304 , " cannot use at() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief access specified object element with bounds checking
Returns a reference to the element at with specified key @ a key , with
bounds checking .
@ param [ in ] key key of the element to access
@ return reference to the element at key @ a key
@ throw type_error .304 if the JSON value is not an object ; in this case ,
calling ` at ` with a key makes no sense . See example below .
@ throw out_of_range .403 if the key @ a key is is not stored in the object ;
that is , ` find ( key ) = = end ( ) ` . See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Logarithmic in the size of the container .
@ sa @ ref operator [ ] ( const typename object_t : : key_type & ) for unchecked
access by reference
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
@ liveexample { The example below shows how object elements can be read and
written using ` at ( ) ` . It also demonstrates the different exceptions that
can be thrown . , at__object_t_key_type }
*/
reference at ( const typename object_t : : key_type & key )
{
// at only works for objects
if ( is_object ( ) )
{
JSON_TRY
{
return m_value . object - > at ( key ) ;
}
JSON_CATCH ( std : : out_of_range & )
{
// create better exception explanation
JSON_THROW ( out_of_range : : create ( 403 , " key ' " + key + " ' not found " ) ) ;
}
}
else
{
JSON_THROW ( type_error : : create ( 304 , " cannot use at() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief access specified object element with bounds checking
Returns a const reference to the element at with specified key @ a key ,
with bounds checking .
@ param [ in ] key key of the element to access
@ return const reference to the element at key @ a key
@ throw type_error .304 if the JSON value is not an object ; in this case ,
calling ` at ` with a key makes no sense . See example below .
@ throw out_of_range .403 if the key @ a key is is not stored in the object ;
that is , ` find ( key ) = = end ( ) ` . See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Logarithmic in the size of the container .
@ sa @ ref operator [ ] ( const typename object_t : : key_type & ) for unchecked
access by reference
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
@ liveexample { The example below shows how object elements can be read using
` at ( ) ` . It also demonstrates the different exceptions that can be thrown . ,
at__object_t_key_type_const }
*/
const_reference at ( const typename object_t : : key_type & key ) const
{
// at only works for objects
if ( is_object ( ) )
{
JSON_TRY
{
return m_value . object - > at ( key ) ;
}
JSON_CATCH ( std : : out_of_range & )
{
// create better exception explanation
JSON_THROW ( out_of_range : : create ( 403 , " key ' " + key + " ' not found " ) ) ;
}
}
else
{
JSON_THROW ( type_error : : create ( 304 , " cannot use at() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief access specified array element
Returns a reference to the element at specified location @ a idx .
@ note If @ a idx is beyond the range of the array ( i . e . , ` idx > = size ( ) ` ) ,
then the array is silently filled up with ` null ` values to make ` idx ` a
valid reference to the last stored element .
@ param [ in ] idx index of the element to access
@ return reference to the element at index @ a idx
@ throw type_error .305 if the JSON value is not an array or null ; in that
cases , using the [ ] operator with an index makes no sense .
@ complexity Constant if @ a idx is in the range of the array . Otherwise
linear in ` idx - size ( ) ` .
@ liveexample { The example below shows how array elements can be read and
written using ` [ ] ` operator . Note the addition of ` null `
values . , operatorarray__size_type }
@ since version 1.0 .0
*/
reference operator [ ] ( size_type idx )
{
// implicitly convert null value to an empty array
if ( is_null ( ) )
{
m_type = value_t : : array ;
m_value . array = create < array_t > ( ) ;
assert_invariant ( ) ;
}
// operator[] only works for arrays
if ( is_array ( ) )
{
// fill up array with null values if given idx is outside range
if ( idx > = m_value . array - > size ( ) )
{
m_value . array - > insert ( m_value . array - > end ( ) ,
idx - m_value . array - > size ( ) + 1 ,
basic_json ( ) ) ;
}
return m_value . array - > operator [ ] ( idx ) ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief access specified array element
Returns a const reference to the element at specified location @ a idx .
@ param [ in ] idx index of the element to access
@ return const reference to the element at index @ a idx
@ throw type_error .305 if the JSON value is not an array ; in that cases ,
using the [ ] operator with an index makes no sense .
@ complexity Constant .
@ liveexample { The example below shows how array elements can be read using
the ` [ ] ` operator . , operatorarray__size_type_const }
@ since version 1.0 .0
*/
const_reference operator [ ] ( size_type idx ) const
{
// const operator[] only works for arrays
if ( is_array ( ) )
{
return m_value . array - > operator [ ] ( idx ) ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief access specified object element
Returns a reference to the element at with specified key @ a key .
@ note If @ a key is not found in the object , then it is silently added to
the object and filled with a ` null ` value to make ` key ` a valid reference .
In case the value was ` null ` before , it is converted to an object .
@ param [ in ] key key of the element to access
@ return reference to the element at key @ a key
@ throw type_error .305 if the JSON value is not an object or null ; in that
cases , using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read and
written using the ` [ ] ` operator . , operatorarray__key_type }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
*/
reference operator [ ] ( const typename object_t : : key_type & key )
{
// implicitly convert null value to an empty object
if ( is_null ( ) )
{
m_type = value_t : : object ;
m_value . object = create < object_t > ( ) ;
assert_invariant ( ) ;
}
// operator[] only works for objects
if ( is_object ( ) )
{
return m_value . object - > operator [ ] ( key ) ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief read - only access specified object element
Returns a const reference to the element at with specified key @ a key . No
bounds checking is performed .
@ warning If the element with key @ a key does not exist , the behavior is
undefined .
@ param [ in ] key key of the element to access
@ return const reference to the element at key @ a key
@ pre The element with key @ a key must exist . * * This precondition is
enforced with an assertion . * *
@ throw type_error .305 if the JSON value is not an object ; in that cases ,
using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read using
the ` [ ] ` operator . , operatorarray__key_type_const }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
*/
const_reference operator [ ] ( const typename object_t : : key_type & key ) const
{
// const operator[] only works for objects
if ( is_object ( ) )
{
assert ( m_value . object - > find ( key ) ! = m_value . object - > end ( ) ) ;
return m_value . object - > find ( key ) - > second ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief access specified object element
Returns a reference to the element at with specified key @ a key .
@ note If @ a key is not found in the object , then it is silently added to
the object and filled with a ` null ` value to make ` key ` a valid reference .
In case the value was ` null ` before , it is converted to an object .
@ param [ in ] key key of the element to access
@ return reference to the element at key @ a key
@ throw type_error .305 if the JSON value is not an object or null ; in that
cases , using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read and
written using the ` [ ] ` operator . , operatorarray__key_type }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
*/
template < typename T , std : : size_t n >
reference operator [ ] ( T * ( & key ) [ n ] )
{
return operator [ ] ( static_cast < const T > ( key ) ) ;
}
/*!
@ brief read - only access specified object element
Returns a const reference to the element at with specified key @ a key . No
bounds checking is performed .
@ warning If the element with key @ a key does not exist , the behavior is
undefined .
@ note This function is required for compatibility reasons with Clang .
@ param [ in ] key key of the element to access
@ return const reference to the element at key @ a key
@ throw type_error .305 if the JSON value is not an object ; in that cases ,
using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read using
the ` [ ] ` operator . , operatorarray__key_type_const }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.0 .0
*/
template < typename T , std : : size_t n >
const_reference operator [ ] ( T * ( & key ) [ n ] ) const
{
return operator [ ] ( static_cast < const T > ( key ) ) ;
}
/*!
@ brief access specified object element
Returns a reference to the element at with specified key @ a key .
@ note If @ a key is not found in the object , then it is silently added to
the object and filled with a ` null ` value to make ` key ` a valid reference .
In case the value was ` null ` before , it is converted to an object .
@ param [ in ] key key of the element to access
@ return reference to the element at key @ a key
@ throw type_error .305 if the JSON value is not an object or null ; in that
cases , using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read and
written using the ` [ ] ` operator . , operatorarray__key_type }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.1 .0
*/
template < typename T >
reference operator [ ] ( T * key )
{
// implicitly convert null to object
if ( is_null ( ) )
{
m_type = value_t : : object ;
m_value = value_t : : object ;
assert_invariant ( ) ;
}
// at only works for objects
if ( is_object ( ) )
{
return m_value . object - > operator [ ] ( key ) ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief read - only access specified object element
Returns a const reference to the element at with specified key @ a key . No
bounds checking is performed .
@ warning If the element with key @ a key does not exist , the behavior is
undefined .
@ param [ in ] key key of the element to access
@ return const reference to the element at key @ a key
@ pre The element with key @ a key must exist . * * This precondition is
enforced with an assertion . * *
@ throw type_error .305 if the JSON value is not an object ; in that cases ,
using the [ ] operator with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be read using
the ` [ ] ` operator . , operatorarray__key_type_const }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref value ( ) for access by value with a default value
@ since version 1.1 .0
*/
template < typename T >
const_reference operator [ ] ( T * key ) const
{
// at only works for objects
if ( is_object ( ) )
{
assert ( m_value . object - > find ( key ) ! = m_value . object - > end ( ) ) ;
return m_value . object - > find ( key ) - > second ;
}
JSON_THROW ( type_error : : create ( 305 , " cannot use operator[] with " + type_name ( ) ) ) ;
}
/*!
@ brief access specified object element with default value
Returns either a copy of an object ' s element at the specified key @ a key
or a given default value if no element with key @ a key exists .
The function is basically equivalent to executing
@ code { . cpp }
try {
return at ( key ) ;
} catch ( out_of_range ) {
return default_value ;
}
@ endcode
@ note Unlike @ ref at ( const typename object_t : : key_type & ) , this function
does not throw if the given key @ a key was not found .
@ note Unlike @ ref operator [ ] ( const typename object_t : : key_type & key ) , this
function does not implicitly add an element to the position defined by @ a
key . This function is furthermore also applicable to const objects .
@ param [ in ] key key of the element to access
@ param [ in ] default_value the value to return if @ a key is not found
@ tparam ValueType type compatible to JSON values , for instance ` int ` for
JSON integer numbers , ` bool ` for JSON booleans , or ` std : : vector ` types for
JSON arrays . Note the type of the expected value at @ a key and the default
value @ a default_value must be compatible .
@ return copy of the element at key @ a key or @ a default_value if @ a key
is not found
@ throw type_error .306 if the JSON value is not an objec ; in that cases ,
using ` value ( ) ` with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be queried
with a default value . , basic_json__value }
@ sa @ ref at ( const typename object_t : : key_type & ) for access by reference
with range checking
@ sa @ ref operator [ ] ( const typename object_t : : key_type & ) for unchecked
access by reference
@ since version 1.0 .0
*/
template < class ValueType , typename std : : enable_if <
std : : is_convertible < basic_json_t , ValueType > : : value , int > : : type = 0 >
ValueType value ( const typename object_t : : key_type & key , ValueType default_value ) const
{
// at only works for objects
if ( is_object ( ) )
{
// if key is found, return value and given default value otherwise
const auto it = find ( key ) ;
if ( it ! = end ( ) )
{
return * it ;
}
return default_value ;
}
else
{
JSON_THROW ( type_error : : create ( 306 , " cannot use value() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief overload for a default value of type const char *
@ copydoc basic_json : : value ( const typename object_t : : key_type & , ValueType ) const
*/
string_t value ( const typename object_t : : key_type & key , const char * default_value ) const
{
return value ( key , string_t ( default_value ) ) ;
}
/*!
@ brief access specified object element via JSON Pointer with default value
Returns either a copy of an object ' s element at the specified key @ a key
or a given default value if no element with key @ a key exists .
The function is basically equivalent to executing
@ code { . cpp }
try {
return at ( ptr ) ;
} catch ( out_of_range ) {
return default_value ;
}
@ endcode
@ note Unlike @ ref at ( const json_pointer & ) , this function does not throw
if the given key @ a key was not found .
@ param [ in ] ptr a JSON pointer to the element to access
@ param [ in ] default_value the value to return if @ a ptr found no value
@ tparam ValueType type compatible to JSON values , for instance ` int ` for
JSON integer numbers , ` bool ` for JSON booleans , or ` std : : vector ` types for
JSON arrays . Note the type of the expected value at @ a key and the default
value @ a default_value must be compatible .
@ return copy of the element at key @ a key or @ a default_value if @ a key
is not found
@ throw type_error .306 if the JSON value is not an objec ; in that cases ,
using ` value ( ) ` with a key makes no sense .
@ complexity Logarithmic in the size of the container .
@ liveexample { The example below shows how object elements can be queried
with a default value . , basic_json__value_ptr }
@ sa @ ref operator [ ] ( const json_pointer & ) for unchecked access by reference
@ since version 2.0 .2
*/
template < class ValueType , typename std : : enable_if <
std : : is_convertible < basic_json_t , ValueType > : : value , int > : : type = 0 >
ValueType value ( const json_pointer & ptr , ValueType default_value ) const
{
// at only works for objects
if ( is_object ( ) )
{
// if pointer resolves a value, return it or use default value
JSON_TRY
{
return ptr . get_checked ( this ) ;
}
JSON_CATCH ( out_of_range & )
{
return default_value ;
}
}
JSON_THROW ( type_error : : create ( 306 , " cannot use value() with " + type_name ( ) ) ) ;
}
/*!
@ brief overload for a default value of type const char *
@ copydoc basic_json : : value ( const json_pointer & , ValueType ) const
*/
string_t value ( const json_pointer & ptr , const char * default_value ) const
{
return value ( ptr , string_t ( default_value ) ) ;
}
/*!
@ brief access the first element
Returns a reference to the first element in the container . For a JSON
container ` c ` , the expression ` c . front ( ) ` is equivalent to ` * c . begin ( ) ` .
@ return In case of a structured type ( array or object ) , a reference to the
first element is returned . In case of number , string , or boolean values , a
reference to the value is returned .
@ complexity Constant .
@ pre The JSON value must not be ` null ` ( would throw ` std : : out_of_range ` )
or an empty array or object ( undefined behavior , * * guarded by
assertions * * ) .
@ post The JSON value remains unchanged .
@ throw invalid_iterator .214 when called on ` null ` value
@ liveexample { The following code shows an example for ` front ( ) ` . , front }
@ sa @ ref back ( ) - - access the last element
@ since version 1.0 .0
*/
reference front ( )
{
return * begin ( ) ;
}
/*!
@ copydoc basic_json : : front ( )
*/
const_reference front ( ) const
{
return * cbegin ( ) ;
}
/*!
@ brief access the last element
Returns a reference to the last element in the container . For a JSON
container ` c ` , the expression ` c . back ( ) ` is equivalent to
@ code { . cpp }
auto tmp = c . end ( ) ;
- - tmp ;
return * tmp ;
@ endcode
@ return In case of a structured type ( array or object ) , a reference to the
last element is returned . In case of number , string , or boolean values , a
reference to the value is returned .
@ complexity Constant .
@ pre The JSON value must not be ` null ` ( would throw ` std : : out_of_range ` )
or an empty array or object ( undefined behavior , * * guarded by
assertions * * ) .
@ post The JSON value remains unchanged .
@ throw invalid_iterator .214 when called on a ` null ` value . See example
below .
@ liveexample { The following code shows an example for ` back ( ) ` . , back }
@ sa @ ref front ( ) - - access the first element
@ since version 1.0 .0
*/
reference back ( )
{
auto tmp = end ( ) ;
- - tmp ;
return * tmp ;
}
/*!
@ copydoc basic_json : : back ( )
*/
const_reference back ( ) const
{
auto tmp = cend ( ) ;
- - tmp ;
return * tmp ;
}
/*!
@ brief remove element given an iterator
Removes the element specified by iterator @ a pos . The iterator @ a pos must
be valid and dereferenceable . Thus the ` end ( ) ` iterator ( which is valid ,
but is not dereferenceable ) cannot be used as a value for @ a pos .
If called on a primitive type other than ` null ` , the resulting JSON value
will be ` null ` .
@ param [ in ] pos iterator to the element to remove
@ return Iterator following the last removed element . If the iterator @ a
pos refers to the last element , the ` end ( ) ` iterator is returned .
@ tparam IteratorType an @ ref iterator or @ ref const_iterator
@ post Invalidates iterators and references at or after the point of the
erase , including the ` end ( ) ` iterator .
@ throw type_error .307 if called on a ` null ` value ; example : ` " cannot use
erase ( ) with null " `
@ throw invalid_iterator .202 if called on an iterator which does not belong
to the current JSON value ; example : ` " iterator does not fit current
value " `
@ throw invalid_iterator .205 if called on a primitive type with invalid
iterator ( i . e . , any iterator which is not ` begin ( ) ` ) ; example : ` " iterator
out of range " `
@ complexity The complexity depends on the type :
- objects : amortized constant
- arrays : linear in distance between @ a pos and the end of the container
- strings : linear in the length of the string
- other types : constant
@ liveexample { The example shows the result of ` erase ( ) ` for different JSON
types . , erase__IteratorType }
@ sa @ ref erase ( IteratorType , IteratorType ) - - removes the elements in
the given range
@ sa @ ref erase ( const typename object_t : : key_type & ) - - removes the element
from an object at the given key
@ sa @ ref erase ( const size_type ) - - removes the element from an array at
the given index
@ since version 1.0 .0
*/
template < class IteratorType , typename std : : enable_if <
std : : is_same < IteratorType , typename basic_json_t : : iterator > : : value or
std : : is_same < IteratorType , typename basic_json_t : : const_iterator > : : value , int > : : type
= 0 >
IteratorType erase ( IteratorType pos )
{
// make sure iterator fits the current value
if ( this ! = pos . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterator does not fit current value " ) ) ;
}
IteratorType result = end ( ) ;
switch ( m_type )
{
case value_t : : boolean :
case value_t : : number_float :
case value_t : : number_integer :
case value_t : : number_unsigned :
case value_t : : string :
{
if ( not pos . m_it . primitive_iterator . is_begin ( ) )
{
JSON_THROW ( invalid_iterator : : create ( 205 , " iterator out of range " ) ) ;
}
if ( is_string ( ) )
{
AllocatorType < string_t > alloc ;
alloc . destroy ( m_value . string ) ;
alloc . deallocate ( m_value . string , 1 ) ;
m_value . string = nullptr ;
}
m_type = value_t : : null ;
assert_invariant ( ) ;
break ;
}
case value_t : : object :
{
result . m_it . object_iterator = m_value . object - > erase ( pos . m_it . object_iterator ) ;
break ;
}
case value_t : : array :
{
result . m_it . array_iterator = m_value . array - > erase ( pos . m_it . array_iterator ) ;
break ;
}
default :
{
JSON_THROW ( type_error : : create ( 307 , " cannot use erase() with " + type_name ( ) ) ) ;
}
}
return result ;
}
/*!
@ brief remove elements given an iterator range
Removes the element specified by the range ` [ first ; last ) ` . The iterator
@ a first does not need to be dereferenceable if ` first = = last ` : erasing
an empty range is a no - op .
If called on a primitive type other than ` null ` , the resulting JSON value
will be ` null ` .
@ param [ in ] first iterator to the beginning of the range to remove
@ param [ in ] last iterator past the end of the range to remove
@ return Iterator following the last removed element . If the iterator @ a
second refers to the last element , the ` end ( ) ` iterator is returned .
@ tparam IteratorType an @ ref iterator or @ ref const_iterator
@ post Invalidates iterators and references at or after the point of the
erase , including the ` end ( ) ` iterator .
@ throw type_error .307 if called on a ` null ` value ; example : ` " cannot use
erase ( ) with null " `
@ throw invalid_iterator .203 if called on iterators which does not belong
to the current JSON value ; example : ` " iterators do not fit current value " `
@ throw invalid_iterator .204 if called on a primitive type with invalid
iterators ( i . e . , if ` first ! = begin ( ) ` and ` last ! = end ( ) ` ) ; example :
` " iterators out of range " `
@ complexity The complexity depends on the type :
- objects : ` log ( size ( ) ) + std : : distance ( first , last ) `
- arrays : linear in the distance between @ a first and @ a last , plus linear
in the distance between @ a last and end of the container
- strings : linear in the length of the string
- other types : constant
@ liveexample { The example shows the result of ` erase ( ) ` for different JSON
types . , erase__IteratorType_IteratorType }
@ sa @ ref erase ( IteratorType ) - - removes the element at a given position
@ sa @ ref erase ( const typename object_t : : key_type & ) - - removes the element
from an object at the given key
@ sa @ ref erase ( const size_type ) - - removes the element from an array at
the given index
@ since version 1.0 .0
*/
template < class IteratorType , typename std : : enable_if <
std : : is_same < IteratorType , typename basic_json_t : : iterator > : : value or
std : : is_same < IteratorType , typename basic_json_t : : const_iterator > : : value , int > : : type
= 0 >
IteratorType erase ( IteratorType first , IteratorType last )
{
// make sure iterator fits the current value
if ( this ! = first . m_object or this ! = last . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 203 , " iterators do not fit current value " ) ) ;
}
IteratorType result = end ( ) ;
switch ( m_type )
{
case value_t : : boolean :
case value_t : : number_float :
case value_t : : number_integer :
case value_t : : number_unsigned :
case value_t : : string :
{
if ( not first . m_it . primitive_iterator . is_begin ( ) or not last . m_it . primitive_iterator . is_end ( ) )
{
JSON_THROW ( invalid_iterator : : create ( 204 , " iterators out of range " ) ) ;
}
if ( is_string ( ) )
{
AllocatorType < string_t > alloc ;
alloc . destroy ( m_value . string ) ;
alloc . deallocate ( m_value . string , 1 ) ;
m_value . string = nullptr ;
}
m_type = value_t : : null ;
assert_invariant ( ) ;
break ;
}
case value_t : : object :
{
result . m_it . object_iterator = m_value . object - > erase ( first . m_it . object_iterator ,
last . m_it . object_iterator ) ;
break ;
}
case value_t : : array :
{
result . m_it . array_iterator = m_value . array - > erase ( first . m_it . array_iterator ,
last . m_it . array_iterator ) ;
break ;
}
default :
{
JSON_THROW ( type_error : : create ( 307 , " cannot use erase() with " + type_name ( ) ) ) ;
}
}
return result ;
}
/*!
@ brief remove element from a JSON object given a key
Removes elements from a JSON object with the key value @ a key .
@ param [ in ] key value of the elements to remove
@ return Number of elements removed . If @ a ObjectType is the default
` std : : map ` type , the return value will always be ` 0 ` ( @ a key was not
found ) or ` 1 ` ( @ a key was found ) .
@ post References and iterators to the erased elements are invalidated .
Other references and iterators are not affected .
@ throw type_error .307 when called on a type other than JSON object ;
example : ` " cannot use erase() with null " `
@ complexity ` log ( size ( ) ) + count ( key ) `
@ liveexample { The example shows the effect of ` erase ( ) ` . , erase__key_type }
@ sa @ ref erase ( IteratorType ) - - removes the element at a given position
@ sa @ ref erase ( IteratorType , IteratorType ) - - removes the elements in
the given range
@ sa @ ref erase ( const size_type ) - - removes the element from an array at
the given index
@ since version 1.0 .0
*/
size_type erase ( const typename object_t : : key_type & key )
{
// this erase only works for objects
if ( is_object ( ) )
{
return m_value . object - > erase ( key ) ;
}
JSON_THROW ( type_error : : create ( 307 , " cannot use erase() with " + type_name ( ) ) ) ;
}
/*!
@ brief remove element from a JSON array given an index
Removes element from a JSON array at the index @ a idx .
@ param [ in ] idx index of the element to remove
@ throw type_error .307 when called on a type other than JSON object ;
example : ` " cannot use erase() with null " `
@ throw out_of_range .401 when ` idx > = size ( ) ` ; example : ` " array index 17
is out of range " `
@ complexity Linear in distance between @ a idx and the end of the container .
@ liveexample { The example shows the effect of ` erase ( ) ` . , erase__size_type }
@ sa @ ref erase ( IteratorType ) - - removes the element at a given position
@ sa @ ref erase ( IteratorType , IteratorType ) - - removes the elements in
the given range
@ sa @ ref erase ( const typename object_t : : key_type & ) - - removes the element
from an object at the given key
@ since version 1.0 .0
*/
void erase ( const size_type idx )
{
// this erase only works for arrays
if ( is_array ( ) )
{
if ( idx > = size ( ) )
{
JSON_THROW ( out_of_range : : create ( 401 , " array index " + std : : to_string ( idx ) + " is out of range " ) ) ;
}
m_value . array - > erase ( m_value . array - > begin ( ) + static_cast < difference_type > ( idx ) ) ;
}
else
{
JSON_THROW ( type_error : : create ( 307 , " cannot use erase() with " + type_name ( ) ) ) ;
}
}
/// @}
////////////
// lookup //
////////////
/// @name lookup
/// @{
/*!
@ brief find an element in a JSON object
Finds an element in a JSON object with key equivalent to @ a key . If the
element is not found or the JSON value is not an object , end ( ) is
returned .
@ note This method always returns @ ref end ( ) when executed on a JSON type
that is not an object .
@ param [ in ] key key value of the element to search for
@ return Iterator to an element with key equivalent to @ a key . If no such
element is found or the JSON value is not an object , past - the - end ( see
@ ref end ( ) ) iterator is returned .
@ complexity Logarithmic in the size of the JSON object .
@ liveexample { The example shows how ` find ( ) ` is used . , find__key_type }
@ since version 1.0 .0
*/
iterator find ( typename object_t : : key_type key )
{
auto result = end ( ) ;
if ( is_object ( ) )
{
result . m_it . object_iterator = m_value . object - > find ( key ) ;
}
return result ;
}
/*!
@ brief find an element in a JSON object
@ copydoc find ( typename object_t : : key_type )
*/
const_iterator find ( typename object_t : : key_type key ) const
{
auto result = cend ( ) ;
if ( is_object ( ) )
{
result . m_it . object_iterator = m_value . object - > find ( key ) ;
}
return result ;
}
/*!
@ brief returns the number of occurrences of a key in a JSON object
Returns the number of elements with key @ a key . If ObjectType is the
default ` std : : map ` type , the return value will always be ` 0 ` ( @ a key was
not found ) or ` 1 ` ( @ a key was found ) .
@ note This method always returns ` 0 ` when executed on a JSON type that is
not an object .
@ param [ in ] key key value of the element to count
@ return Number of elements with key @ a key . If the JSON value is not an
object , the return value will be ` 0 ` .
@ complexity Logarithmic in the size of the JSON object .
@ liveexample { The example shows how ` count ( ) ` is used . , count }
@ since version 1.0 .0
*/
size_type count ( typename object_t : : key_type key ) const
{
// return 0 for all nonobject types
return is_object ( ) ? m_value . object - > count ( key ) : 0 ;
}
/// @}
///////////////
// iterators //
///////////////
/// @name iterators
/// @{
/*!
@ brief returns an iterator to the first element
Returns an iterator to the first element .
@ image html range - begin - end . svg " Illustration from cppreference.com "
@ return iterator to the first element
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
@ liveexample { The following code shows an example for ` begin ( ) ` . , begin }
@ sa @ ref cbegin ( ) - - returns a const iterator to the beginning
@ sa @ ref end ( ) - - returns an iterator to the end
@ sa @ ref cend ( ) - - returns a const iterator to the end
@ since version 1.0 .0
*/
iterator begin ( ) noexcept
{
iterator result ( this ) ;
result . set_begin ( ) ;
return result ;
}
/*!
@ copydoc basic_json : : cbegin ( )
*/
const_iterator begin ( ) const noexcept
{
return cbegin ( ) ;
}
/*!
@ brief returns a const iterator to the first element
Returns a const iterator to the first element .
@ image html range - begin - end . svg " Illustration from cppreference.com "
@ return const iterator to the first element
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
- Has the semantics of ` const_cast < const basic_json & > ( * this ) . begin ( ) ` .
@ liveexample { The following code shows an example for ` cbegin ( ) ` . , cbegin }
@ sa @ ref begin ( ) - - returns an iterator to the beginning
@ sa @ ref end ( ) - - returns an iterator to the end
@ sa @ ref cend ( ) - - returns a const iterator to the end
@ since version 1.0 .0
*/
const_iterator cbegin ( ) const noexcept
{
const_iterator result ( this ) ;
result . set_begin ( ) ;
return result ;
}
/*!
@ brief returns an iterator to one past the last element
Returns an iterator to one past the last element .
@ image html range - begin - end . svg " Illustration from cppreference.com "
@ return iterator one past the last element
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
@ liveexample { The following code shows an example for ` end ( ) ` . , end }
@ sa @ ref cend ( ) - - returns a const iterator to the end
@ sa @ ref begin ( ) - - returns an iterator to the beginning
@ sa @ ref cbegin ( ) - - returns a const iterator to the beginning
@ since version 1.0 .0
*/
iterator end ( ) noexcept
{
iterator result ( this ) ;
result . set_end ( ) ;
return result ;
}
/*!
@ copydoc basic_json : : cend ( )
*/
const_iterator end ( ) const noexcept
{
return cend ( ) ;
}
/*!
@ brief returns a const iterator to one past the last element
Returns a const iterator to one past the last element .
@ image html range - begin - end . svg " Illustration from cppreference.com "
@ return const iterator one past the last element
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
- Has the semantics of ` const_cast < const basic_json & > ( * this ) . end ( ) ` .
@ liveexample { The following code shows an example for ` cend ( ) ` . , cend }
@ sa @ ref end ( ) - - returns an iterator to the end
@ sa @ ref begin ( ) - - returns an iterator to the beginning
@ sa @ ref cbegin ( ) - - returns a const iterator to the beginning
@ since version 1.0 .0
*/
const_iterator cend ( ) const noexcept
{
const_iterator result ( this ) ;
result . set_end ( ) ;
return result ;
}
/*!
@ brief returns an iterator to the reverse - beginning
Returns an iterator to the reverse - beginning ; that is , the last element .
@ image html range - rbegin - rend . svg " Illustration from cppreference.com "
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ ReversibleContainer ] ( http : //en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements :
- The complexity is constant .
- Has the semantics of ` reverse_iterator ( end ( ) ) ` .
@ liveexample { The following code shows an example for ` rbegin ( ) ` . , rbegin }
@ sa @ ref crbegin ( ) - - returns a const reverse iterator to the beginning
@ sa @ ref rend ( ) - - returns a reverse iterator to the end
@ sa @ ref crend ( ) - - returns a const reverse iterator to the end
@ since version 1.0 .0
*/
reverse_iterator rbegin ( ) noexcept
{
return reverse_iterator ( end ( ) ) ;
}
/*!
@ copydoc basic_json : : crbegin ( )
*/
const_reverse_iterator rbegin ( ) const noexcept
{
return crbegin ( ) ;
}
/*!
@ brief returns an iterator to the reverse - end
Returns an iterator to the reverse - end ; that is , one before the first
element .
@ image html range - rbegin - rend . svg " Illustration from cppreference.com "
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ ReversibleContainer ] ( http : //en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements :
- The complexity is constant .
- Has the semantics of ` reverse_iterator ( begin ( ) ) ` .
@ liveexample { The following code shows an example for ` rend ( ) ` . , rend }
@ sa @ ref crend ( ) - - returns a const reverse iterator to the end
@ sa @ ref rbegin ( ) - - returns a reverse iterator to the beginning
@ sa @ ref crbegin ( ) - - returns a const reverse iterator to the beginning
@ since version 1.0 .0
*/
reverse_iterator rend ( ) noexcept
{
return reverse_iterator ( begin ( ) ) ;
}
/*!
@ copydoc basic_json : : crend ( )
*/
const_reverse_iterator rend ( ) const noexcept
{
return crend ( ) ;
}
/*!
@ brief returns a const reverse iterator to the last element
Returns a const iterator to the reverse - beginning ; that is , the last
element .
@ image html range - rbegin - rend . svg " Illustration from cppreference.com "
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ ReversibleContainer ] ( http : //en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements :
- The complexity is constant .
- Has the semantics of ` const_cast < const basic_json & > ( * this ) . rbegin ( ) ` .
@ liveexample { The following code shows an example for ` crbegin ( ) ` . , crbegin }
@ sa @ ref rbegin ( ) - - returns a reverse iterator to the beginning
@ sa @ ref rend ( ) - - returns a reverse iterator to the end
@ sa @ ref crend ( ) - - returns a const reverse iterator to the end
@ since version 1.0 .0
*/
const_reverse_iterator crbegin ( ) const noexcept
{
return const_reverse_iterator ( cend ( ) ) ;
}
/*!
@ brief returns a const reverse iterator to one before the first
Returns a const reverse iterator to the reverse - end ; that is , one before
the first element .
@ image html range - rbegin - rend . svg " Illustration from cppreference.com "
@ complexity Constant .
@ requirement This function helps ` basic_json ` satisfying the
[ ReversibleContainer ] ( http : //en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements :
- The complexity is constant .
- Has the semantics of ` const_cast < const basic_json & > ( * this ) . rend ( ) ` .
@ liveexample { The following code shows an example for ` crend ( ) ` . , crend }
@ sa @ ref rend ( ) - - returns a reverse iterator to the end
@ sa @ ref rbegin ( ) - - returns a reverse iterator to the beginning
@ sa @ ref crbegin ( ) - - returns a const reverse iterator to the beginning
@ since version 1.0 .0
*/
const_reverse_iterator crend ( ) const noexcept
{
return const_reverse_iterator ( cbegin ( ) ) ;
}
private :
// forward declaration
template < typename IteratorType > class iteration_proxy ;
public :
/*!
@ brief wrapper to access iterator member functions in range - based for
This function allows to access @ ref iterator : : key ( ) and @ ref
iterator : : value ( ) during range - based for loops . In these loops , a
reference to the JSON values is returned , so there is no access to the
underlying iterator .
@ liveexample { The following code shows how the wrapper is used , iterator_wrapper }
@ note The name of this function is not yet final and may change in the
future .
*/
static iteration_proxy < iterator > iterator_wrapper ( reference cont )
{
return iteration_proxy < iterator > ( cont ) ;
}
/*!
@ copydoc iterator_wrapper ( reference )
*/
static iteration_proxy < const_iterator > iterator_wrapper ( const_reference cont )
{
return iteration_proxy < const_iterator > ( cont ) ;
}
/// @}
//////////////
// capacity //
//////////////
/// @name capacity
/// @{
/*!
@ brief checks whether the container is empty
Checks if a JSON value has no elements .
@ return The return value depends on the different types and is
defined as follows :
Value type | return value
- - - - - - - - - - - | - - - - - - - - - - - - -
null | ` true `
boolean | ` false `
string | ` false `
number | ` false `
object | result of function ` object_t : : empty ( ) `
array | result of function ` array_t : : empty ( ) `
@ note This function does not return whether a string stored as JSON value
is empty - it returns whether the JSON container itself is empty which is
false in the case of a string .
@ complexity Constant , as long as @ ref array_t and @ ref object_t satisfy
the Container concept ; that is , their ` empty ( ) ` functions have constant
complexity .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
- Has the semantics of ` begin ( ) = = end ( ) ` .
@ liveexample { The following code uses ` empty ( ) ` to check if a JSON
object contains any elements . , empty }
@ sa @ ref size ( ) - - returns the number of elements
@ since version 1.0 .0
*/
bool empty ( ) const noexcept
{
switch ( m_type )
{
case value_t : : null :
{
// null values are empty
return true ;
}
case value_t : : array :
{
// delegate call to array_t::empty()
return m_value . array - > empty ( ) ;
}
case value_t : : object :
{
// delegate call to object_t::empty()
return m_value . object - > empty ( ) ;
}
default :
{
// all other types are nonempty
return false ;
}
}
}
/*!
@ brief returns the number of elements
Returns the number of elements in a JSON value .
@ return The return value depends on the different types and is
defined as follows :
Value type | return value
- - - - - - - - - - - | - - - - - - - - - - - - -
null | ` 0 `
boolean | ` 1 `
string | ` 1 `
number | ` 1 `
object | result of function object_t : : size ( )
array | result of function array_t : : size ( )
@ note This function does not return the length of a string stored as JSON
value - it returns the number of elements in the JSON value which is 1 in
the case of a string .
@ complexity Constant , as long as @ ref array_t and @ ref object_t satisfy
the Container concept ; that is , their size ( ) functions have constant
complexity .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
- Has the semantics of ` std : : distance ( begin ( ) , end ( ) ) ` .
@ liveexample { The following code calls ` size ( ) ` on the different value
types . , size }
@ sa @ ref empty ( ) - - checks whether the container is empty
@ sa @ ref max_size ( ) - - returns the maximal number of elements
@ since version 1.0 .0
*/
size_type size ( ) const noexcept
{
switch ( m_type )
{
case value_t : : null :
{
// null values are empty
return 0 ;
}
case value_t : : array :
{
// delegate call to array_t::size()
return m_value . array - > size ( ) ;
}
case value_t : : object :
{
// delegate call to object_t::size()
return m_value . object - > size ( ) ;
}
default :
{
// all other types have size 1
return 1 ;
}
}
}
/*!
@ brief returns the maximum possible number of elements
Returns the maximum number of elements a JSON value is able to hold due to
system or library implementation limitations , i . e . ` std : : distance ( begin ( ) ,
end ( ) ) ` for the JSON value .
@ return The return value depends on the different types and is
defined as follows :
Value type | return value
- - - - - - - - - - - | - - - - - - - - - - - - -
null | ` 0 ` ( same as ` size ( ) ` )
boolean | ` 1 ` ( same as ` size ( ) ` )
string | ` 1 ` ( same as ` size ( ) ` )
number | ` 1 ` ( same as ` size ( ) ` )
object | result of function ` object_t : : max_size ( ) `
array | result of function ` array_t : : max_size ( ) `
@ complexity Constant , as long as @ ref array_t and @ ref object_t satisfy
the Container concept ; that is , their ` max_size ( ) ` functions have constant
complexity .
@ requirement This function helps ` basic_json ` satisfying the
[ Container ] ( http : //en.cppreference.com/w/cpp/concept/Container)
requirements :
- The complexity is constant .
- Has the semantics of returning ` b . size ( ) ` where ` b ` is the largest
possible JSON value .
@ liveexample { The following code calls ` max_size ( ) ` on the different value
types . Note the output is implementation specific . , max_size }
@ sa @ ref size ( ) - - returns the number of elements
@ since version 1.0 .0
*/
size_type max_size ( ) const noexcept
{
switch ( m_type )
{
case value_t : : array :
{
// delegate call to array_t::max_size()
return m_value . array - > max_size ( ) ;
}
case value_t : : object :
{
// delegate call to object_t::max_size()
return m_value . object - > max_size ( ) ;
}
default :
{
// all other types have max_size() == size()
return size ( ) ;
}
}
}
/// @}
///////////////
// modifiers //
///////////////
/// @name modifiers
/// @{
/*!
@ brief clears the contents
Clears the content of a JSON value and resets it to the default value as
if @ ref basic_json ( value_t ) would have been called :
Value type | initial value
- - - - - - - - - - - | - - - - - - - - - - - - -
null | ` null `
boolean | ` false `
string | ` " " `
number | ` 0 `
object | ` { } `
array | ` [ ] `
@ complexity Linear in the size of the JSON value .
@ liveexample { The example below shows the effect of ` clear ( ) ` to different
JSON types . , clear }
@ since version 1.0 .0
*/
void clear ( ) noexcept
{
switch ( m_type )
{
case value_t : : number_integer :
{
m_value . number_integer = 0 ;
break ;
}
case value_t : : number_unsigned :
{
m_value . number_unsigned = 0 ;
break ;
}
case value_t : : number_float :
{
m_value . number_float = 0.0 ;
break ;
}
case value_t : : boolean :
{
m_value . boolean = false ;
break ;
}
case value_t : : string :
{
m_value . string - > clear ( ) ;
break ;
}
case value_t : : array :
{
m_value . array - > clear ( ) ;
break ;
}
case value_t : : object :
{
m_value . object - > clear ( ) ;
break ;
}
default :
{
break ;
}
}
}
/*!
@ brief add an object to an array
Appends the given element @ a val to the end of the JSON value . If the
function is called on a JSON null value , an empty array is created before
appending @ a val .
@ param [ in ] val the value to add to the JSON array
@ throw type_error .308 when called on a type other than JSON array or
null ; example : ` " cannot use push_back() with number " `
@ complexity Amortized constant .
@ liveexample { The example shows how ` push_back ( ) ` and ` + = ` can be used to
add elements to a JSON array . Note how the ` null ` value was silently
converted to a JSON array . , push_back }
@ since version 1.0 .0
*/
void push_back ( basic_json & & val )
{
// push_back only works for null objects or arrays
if ( not ( is_null ( ) or is_array ( ) ) )
{
JSON_THROW ( type_error : : create ( 308 , " cannot use push_back() with " + type_name ( ) ) ) ;
}
// transform null object into an array
if ( is_null ( ) )
{
m_type = value_t : : array ;
m_value = value_t : : array ;
assert_invariant ( ) ;
}
// add element to array (move semantics)
m_value . array - > push_back ( std : : move ( val ) ) ;
// invalidate object
val . m_type = value_t : : null ;
}
/*!
@ brief add an object to an array
@ copydoc push_back ( basic_json & & )
*/
reference operator + = ( basic_json & & val )
{
push_back ( std : : move ( val ) ) ;
return * this ;
}
/*!
@ brief add an object to an array
@ copydoc push_back ( basic_json & & )
*/
void push_back ( const basic_json & val )
{
// push_back only works for null objects or arrays
if ( not ( is_null ( ) or is_array ( ) ) )
{
JSON_THROW ( type_error : : create ( 308 , " cannot use push_back() with " + type_name ( ) ) ) ;
}
// transform null object into an array
if ( is_null ( ) )
{
m_type = value_t : : array ;
m_value = value_t : : array ;
assert_invariant ( ) ;
}
// add element to array
m_value . array - > push_back ( val ) ;
}
/*!
@ brief add an object to an array
@ copydoc push_back ( basic_json & & )
*/
reference operator + = ( const basic_json & val )
{
push_back ( val ) ;
return * this ;
}
/*!
@ brief add an object to an object
Inserts the given element @ a val to the JSON object . If the function is
called on a JSON null value , an empty object is created before inserting
@ a val .
@ param [ in ] val the value to add to the JSON object
@ throw type_error .308 when called on a type other than JSON object or
null ; example : ` " cannot use push_back() with number " `
@ complexity Logarithmic in the size of the container , O ( log ( ` size ( ) ` ) ) .
@ liveexample { The example shows how ` push_back ( ) ` and ` + = ` can be used to
add elements to a JSON object . Note how the ` null ` value was silently
converted to a JSON object . , push_back__object_t__value }
@ since version 1.0 .0
*/
void push_back ( const typename object_t : : value_type & val )
{
// push_back only works for null objects or objects
if ( not ( is_null ( ) or is_object ( ) ) )
{
JSON_THROW ( type_error : : create ( 308 , " cannot use push_back() with " + type_name ( ) ) ) ;
}
// transform null object into an object
if ( is_null ( ) )
{
m_type = value_t : : object ;
m_value = value_t : : object ;
assert_invariant ( ) ;
}
// add element to array
m_value . object - > insert ( val ) ;
}
/*!
@ brief add an object to an object
@ copydoc push_back ( const typename object_t : : value_type & )
*/
reference operator + = ( const typename object_t : : value_type & val )
{
push_back ( val ) ;
return * this ;
}
/*!
@ brief add an object to an object
This function allows to use ` push_back ` with an initializer list . In case
1. the current value is an object ,
2. the initializer list @ a init contains only two elements , and
3. the first element of @ a init is a string ,
@ a init is converted into an object element and added using
@ ref push_back ( const typename object_t : : value_type & ) . Otherwise , @ a init
is converted to a JSON value and added using @ ref push_back ( basic_json & & ) .
@ param [ in ] init an initializer list
@ complexity Linear in the size of the initializer list @ a init .
@ note This function is required to resolve an ambiguous overload error ,
because pairs like ` { " key " , " value " } ` can be both interpreted as
` object_t : : value_type ` or ` std : : initializer_list < basic_json > ` , see
https : //github.com/nlohmann/json/issues/235 for more information.
@ liveexample { The example shows how initializer lists are treated as
objects when possible . , push_back__initializer_list }
*/
void push_back ( std : : initializer_list < basic_json > init )
{
if ( is_object ( ) and init . size ( ) = = 2 and init . begin ( ) - > is_string ( ) )
{
const string_t key = * init . begin ( ) ;
push_back ( typename object_t : : value_type ( key , * ( init . begin ( ) + 1 ) ) ) ;
}
else
{
push_back ( basic_json ( init ) ) ;
}
}
/*!
@ brief add an object to an object
@ copydoc push_back ( std : : initializer_list < basic_json > )
*/
reference operator + = ( std : : initializer_list < basic_json > init )
{
push_back ( init ) ;
return * this ;
}
/*!
@ brief add an object to an array
Creates a JSON value from the passed parameters @ a args to the end of the
JSON value . If the function is called on a JSON null value , an empty array
is created before appending the value created from @ a args .
@ param [ in ] args arguments to forward to a constructor of @ ref basic_json
@ tparam Args compatible types to create a @ ref basic_json object
@ throw type_error .311 when called on a type other than JSON array or
null ; example : ` " cannot use emplace_back() with number " `
@ complexity Amortized constant .
@ liveexample { The example shows how ` push_back ( ) ` can be used to add
elements to a JSON array . Note how the ` null ` value was silently converted
to a JSON array . , emplace_back }
@ since version 2.0 .8
*/
template < class . . . Args >
void emplace_back ( Args & & . . . args )
{
// emplace_back only works for null objects or arrays
if ( not ( is_null ( ) or is_array ( ) ) )
{
JSON_THROW ( type_error : : create ( 311 , " cannot use emplace_back() with " + type_name ( ) ) ) ;
}
// transform null object into an array
if ( is_null ( ) )
{
m_type = value_t : : array ;
m_value = value_t : : array ;
assert_invariant ( ) ;
}
// add element to array (perfect forwarding)
m_value . array - > emplace_back ( std : : forward < Args > ( args ) . . . ) ;
}
/*!
@ brief add an object to an object if key does not exist
Inserts a new element into a JSON object constructed in - place with the
given @ a args if there is no element with the key in the container . If the
function is called on a JSON null value , an empty object is created before
appending the value created from @ a args .
@ param [ in ] args arguments to forward to a constructor of @ ref basic_json
@ tparam Args compatible types to create a @ ref basic_json object
@ return a pair consisting of an iterator to the inserted element , or the
already - existing element if no insertion happened , and a bool
denoting whether the insertion took place .
@ throw type_error .311 when called on a type other than JSON object or
null ; example : ` " cannot use emplace() with number " `
@ complexity Logarithmic in the size of the container , O ( log ( ` size ( ) ` ) ) .
@ liveexample { The example shows how ` emplace ( ) ` can be used to add elements
to a JSON object . Note how the ` null ` value was silently converted to a
JSON object . Further note how no value is added if there was already one
value stored with the same key . , emplace }
@ since version 2.0 .8
*/
template < class . . . Args >
std : : pair < iterator , bool > emplace ( Args & & . . . args )
{
// emplace only works for null objects or arrays
if ( not ( is_null ( ) or is_object ( ) ) )
{
JSON_THROW ( type_error : : create ( 311 , " cannot use emplace() with " + type_name ( ) ) ) ;
}
// transform null object into an object
if ( is_null ( ) )
{
m_type = value_t : : object ;
m_value = value_t : : object ;
assert_invariant ( ) ;
}
// add element to array (perfect forwarding)
auto res = m_value . object - > emplace ( std : : forward < Args > ( args ) . . . ) ;
// create result iterator and set iterator to the result of emplace
auto it = begin ( ) ;
it . m_it . object_iterator = res . first ;
// return pair of iterator and boolean
return { it , res . second } ;
}
/*!
@ brief inserts element
Inserts element @ a val before iterator @ a pos .
@ param [ in ] pos iterator before which the content will be inserted ; may be
the end ( ) iterator
@ param [ in ] val element to insert
@ return iterator pointing to the inserted @ a val .
@ throw type_error .309 if called on JSON values other than arrays ;
example : ` " cannot use insert() with string " `
@ throw invalid_iterator .202 if @ a pos is not an iterator of * this ;
example : ` " iterator does not fit current value " `
@ complexity Constant plus linear in the distance between @ a pos and end of
the container .
@ liveexample { The example shows how ` insert ( ) ` is used . , insert }
@ since version 1.0 .0
*/
iterator insert ( const_iterator pos , const basic_json & val )
{
// insert only works for arrays
if ( is_array ( ) )
{
// check if iterator pos fits to this JSON value
if ( pos . m_object ! = this )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterator does not fit current value " ) ) ;
}
// insert to array and return iterator
iterator result ( this ) ;
result . m_it . array_iterator = m_value . array - > insert ( pos . m_it . array_iterator , val ) ;
return result ;
}
JSON_THROW ( type_error : : create ( 309 , " cannot use insert() with " + type_name ( ) ) ) ;
}
/*!
@ brief inserts element
@ copydoc insert ( const_iterator , const basic_json & )
*/
iterator insert ( const_iterator pos , basic_json & & val )
{
return insert ( pos , val ) ;
}
/*!
@ brief inserts elements
Inserts @ a cnt copies of @ a val before iterator @ a pos .
@ param [ in ] pos iterator before which the content will be inserted ; may be
the end ( ) iterator
@ param [ in ] cnt number of copies of @ a val to insert
@ param [ in ] val element to insert
@ return iterator pointing to the first element inserted , or @ a pos if
` cnt = = 0 `
@ throw type_error .309 if called on JSON values other than arrays ; example :
` " cannot use insert() with string " `
@ throw invalid_iterator .202 if @ a pos is not an iterator of * this ;
example : ` " iterator does not fit current value " `
@ complexity Linear in @ a cnt plus linear in the distance between @ a pos
and end of the container .
@ liveexample { The example shows how ` insert ( ) ` is used . , insert__count }
@ since version 1.0 .0
*/
iterator insert ( const_iterator pos , size_type cnt , const basic_json & val )
{
// insert only works for arrays
if ( is_array ( ) )
{
// check if iterator pos fits to this JSON value
if ( pos . m_object ! = this )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterator does not fit current value " ) ) ;
}
// insert to array and return iterator
iterator result ( this ) ;
result . m_it . array_iterator = m_value . array - > insert ( pos . m_it . array_iterator , cnt , val ) ;
return result ;
}
JSON_THROW ( type_error : : create ( 309 , " cannot use insert() with " + type_name ( ) ) ) ;
}
/*!
@ brief inserts elements
Inserts elements from range ` [ first , last ) ` before iterator @ a pos .
@ param [ in ] pos iterator before which the content will be inserted ; may be
the end ( ) iterator
@ param [ in ] first begin of the range of elements to insert
@ param [ in ] last end of the range of elements to insert
@ throw type_error .309 if called on JSON values other than arrays ; example :
` " cannot use insert() with string " `
@ throw invalid_iterator .202 if @ a pos is not an iterator of * this ;
example : ` " iterator does not fit current value " `
@ throw invalid_iterator .210 if @ a first and @ a last do not belong to the
same JSON value ; example : ` " iterators do not fit " `
@ throw invalid_iterator .211 if @ a first or @ a last are iterators into
container for which insert is called ; example : ` " passed iterators may not
belong to container " `
@ return iterator pointing to the first element inserted , or @ a pos if
` first = = last `
@ complexity Linear in ` std : : distance ( first , last ) ` plus linear in the
distance between @ a pos and end of the container .
@ liveexample { The example shows how ` insert ( ) ` is used . , insert__range }
@ since version 1.0 .0
*/
iterator insert ( const_iterator pos , const_iterator first , const_iterator last )
{
// insert only works for arrays
if ( not is_array ( ) )
{
JSON_THROW ( type_error : : create ( 309 , " cannot use insert() with " + type_name ( ) ) ) ;
}
// check if iterator pos fits to this JSON value
if ( pos . m_object ! = this )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterator does not fit current value " ) ) ;
}
// check if range iterators belong to the same JSON object
if ( first . m_object ! = last . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 210 , " iterators do not fit " ) ) ;
}
if ( first . m_object = = this or last . m_object = = this )
{
JSON_THROW ( invalid_iterator : : create ( 211 , " passed iterators may not belong to container " ) ) ;
}
// insert to array and return iterator
iterator result ( this ) ;
result . m_it . array_iterator = m_value . array - > insert (
pos . m_it . array_iterator ,
first . m_it . array_iterator ,
last . m_it . array_iterator ) ;
return result ;
}
/*!
@ brief inserts elements
Inserts elements from initializer list @ a ilist before iterator @ a pos .
@ param [ in ] pos iterator before which the content will be inserted ; may be
the end ( ) iterator
@ param [ in ] ilist initializer list to insert the values from
@ throw type_error .309 if called on JSON values other than arrays ; example :
` " cannot use insert() with string " `
@ throw invalid_iterator .202 if @ a pos is not an iterator of * this ;
example : ` " iterator does not fit current value " `
@ return iterator pointing to the first element inserted , or @ a pos if
` ilist ` is empty
@ complexity Linear in ` ilist . size ( ) ` plus linear in the distance between
@ a pos and end of the container .
@ liveexample { The example shows how ` insert ( ) ` is used . , insert__ilist }
@ since version 1.0 .0
*/
iterator insert ( const_iterator pos , std : : initializer_list < basic_json > ilist )
{
// insert only works for arrays
if ( not is_array ( ) )
{
JSON_THROW ( type_error : : create ( 309 , " cannot use insert() with " + type_name ( ) ) ) ;
}
// check if iterator pos fits to this JSON value
if ( pos . m_object ! = this )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterator does not fit current value " ) ) ;
}
// insert to array and return iterator
iterator result ( this ) ;
result . m_it . array_iterator = m_value . array - > insert ( pos . m_it . array_iterator , ilist ) ;
return result ;
}
/*!
@ brief inserts elements
Inserts elements from range ` [ first , last ) ` .
@ param [ in ] first begin of the range of elements to insert
@ param [ in ] last end of the range of elements to insert
@ throw type_error .309 if called on JSON values other than objects ; example :
` " cannot use insert() with string " `
@ throw invalid_iterator .202 if iterator @ a first or @ a last does does not
point to an object ; example : ` " iterators first and last must point to
objects " `
@ throw invalid_iterator .210 if @ a first and @ a last do not belong to the
same JSON value ; example : ` " iterators do not fit " `
@ complexity Logarithmic : ` O ( N * log ( size ( ) + N ) ) ` , where ` N ` is the number
of elements to insert .
@ liveexample { The example shows how ` insert ( ) ` is used . , insert__range_object }
@ since version 3.0 .0
*/
void insert ( const_iterator first , const_iterator last )
{
// insert only works for objects
if ( not is_object ( ) )
{
JSON_THROW ( type_error : : create ( 309 , " cannot use insert() with " + type_name ( ) ) ) ;
}
// check if range iterators belong to the same JSON object
if ( first . m_object ! = last . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 210 , " iterators do not fit " ) ) ;
}
// passed iterators must belong to objects
if ( not first . m_object - > is_object ( ) or not first . m_object - > is_object ( ) )
{
JSON_THROW ( invalid_iterator : : create ( 202 , " iterators first and last must point to objects " ) ) ;
}
m_value . object - > insert ( first . m_it . object_iterator , last . m_it . object_iterator ) ;
}
/*!
@ brief exchanges the values
Exchanges the contents of the JSON value with those of @ a other . Does not
invoke any move , copy , or swap operations on individual elements . All
iterators and references remain valid . The past - the - end iterator is
invalidated .
@ param [ in , out ] other JSON value to exchange the contents with
@ complexity Constant .
@ liveexample { The example below shows how JSON values can be swapped with
` swap ( ) ` . , swap__reference }
@ since version 1.0 .0
*/
void swap ( reference other ) noexcept (
std : : is_nothrow_move_constructible < value_t > : : value and
std : : is_nothrow_move_assignable < value_t > : : value and
std : : is_nothrow_move_constructible < json_value > : : value and
std : : is_nothrow_move_assignable < json_value > : : value
)
{
std : : swap ( m_type , other . m_type ) ;
std : : swap ( m_value , other . m_value ) ;
assert_invariant ( ) ;
}
/*!
@ brief exchanges the values
Exchanges the contents of a JSON array with those of @ a other . Does not
invoke any move , copy , or swap operations on individual elements . All
iterators and references remain valid . The past - the - end iterator is
invalidated .
@ param [ in , out ] other array to exchange the contents with
@ throw type_error .310 when JSON value is not an array ; example : ` " cannot
use swap ( ) with string " `
@ complexity Constant .
@ liveexample { The example below shows how arrays can be swapped with
` swap ( ) ` . , swap__array_t }
@ since version 1.0 .0
*/
void swap ( array_t & other )
{
// swap only works for arrays
if ( is_array ( ) )
{
std : : swap ( * ( m_value . array ) , other ) ;
}
else
{
JSON_THROW ( type_error : : create ( 310 , " cannot use swap() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief exchanges the values
Exchanges the contents of a JSON object with those of @ a other . Does not
invoke any move , copy , or swap operations on individual elements . All
iterators and references remain valid . The past - the - end iterator is
invalidated .
@ param [ in , out ] other object to exchange the contents with
@ throw type_error .310 when JSON value is not an object ; example :
` " cannot use swap() with string " `
@ complexity Constant .
@ liveexample { The example below shows how objects can be swapped with
` swap ( ) ` . , swap__object_t }
@ since version 1.0 .0
*/
void swap ( object_t & other )
{
// swap only works for objects
if ( is_object ( ) )
{
std : : swap ( * ( m_value . object ) , other ) ;
}
else
{
JSON_THROW ( type_error : : create ( 310 , " cannot use swap() with " + type_name ( ) ) ) ;
}
}
/*!
@ brief exchanges the values
Exchanges the contents of a JSON string with those of @ a other . Does not
invoke any move , copy , or swap operations on individual elements . All
iterators and references remain valid . The past - the - end iterator is
invalidated .
@ param [ in , out ] other string to exchange the contents with
@ throw type_error .310 when JSON value is not a string ; example : ` " cannot
use swap ( ) with boolean " `
@ complexity Constant .
@ liveexample { The example below shows how strings can be swapped with
` swap ( ) ` . , swap__string_t }
@ since version 1.0 .0
*/
void swap ( string_t & other )
{
// swap only works for strings
if ( is_string ( ) )
{
std : : swap ( * ( m_value . string ) , other ) ;
}
else
{
JSON_THROW ( type_error : : create ( 310 , " cannot use swap() with " + type_name ( ) ) ) ;
}
}
/// @}
public :
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
/// @name lexicographical comparison operators
/// @{
/*!
@ brief comparison : equal
Compares two JSON values for equality according to the following rules :
- Two JSON values are equal if ( 1 ) they are from the same type and ( 2 )
their stored values are the same according to their respective
` operator = = ` .
- Integer and floating - point numbers are automatically converted before
comparison . Floating - point numbers are compared indirectly : two
floating - point numbers ` f1 ` and ` f2 ` are considered equal if neither
` f1 > f2 ` nor ` f2 > f1 ` holds . Note than two NaN values are always
treated as unequal .
- Two JSON null values are equal .
@ note NaN values never compare equal to themselves or to other NaN values .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether the values @ a lhs and @ a rhs are equal
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__equal }
@ since version 1.0 .0
*/
friend bool operator = = ( const_reference lhs , const_reference rhs ) noexcept
{
const auto lhs_type = lhs . type ( ) ;
const auto rhs_type = rhs . type ( ) ;
if ( lhs_type = = rhs_type )
{
switch ( lhs_type )
{
case value_t : : array :
{
return * lhs . m_value . array = = * rhs . m_value . array ;
}
case value_t : : object :
{
return * lhs . m_value . object = = * rhs . m_value . object ;
}
case value_t : : null :
{
return true ;
}
case value_t : : string :
{
return * lhs . m_value . string = = * rhs . m_value . string ;
}
case value_t : : boolean :
{
return lhs . m_value . boolean = = rhs . m_value . boolean ;
}
case value_t : : number_integer :
{
return lhs . m_value . number_integer = = rhs . m_value . number_integer ;
}
case value_t : : number_unsigned :
{
return lhs . m_value . number_unsigned = = rhs . m_value . number_unsigned ;
}
case value_t : : number_float :
{
return lhs . m_value . number_float = = rhs . m_value . number_float ;
}
default :
{
return false ;
}
}
}
else if ( lhs_type = = value_t : : number_integer and rhs_type = = value_t : : number_float )
{
return static_cast < number_float_t > ( lhs . m_value . number_integer ) = = rhs . m_value . number_float ;
}
else if ( lhs_type = = value_t : : number_float and rhs_type = = value_t : : number_integer )
{
return lhs . m_value . number_float = = static_cast < number_float_t > ( rhs . m_value . number_integer ) ;
}
else if ( lhs_type = = value_t : : number_unsigned and rhs_type = = value_t : : number_float )
{
return static_cast < number_float_t > ( lhs . m_value . number_unsigned ) = = rhs . m_value . number_float ;
}
else if ( lhs_type = = value_t : : number_float and rhs_type = = value_t : : number_unsigned )
{
return lhs . m_value . number_float = = static_cast < number_float_t > ( rhs . m_value . number_unsigned ) ;
}
else if ( lhs_type = = value_t : : number_unsigned and rhs_type = = value_t : : number_integer )
{
return static_cast < number_integer_t > ( lhs . m_value . number_unsigned ) = = rhs . m_value . number_integer ;
}
else if ( lhs_type = = value_t : : number_integer and rhs_type = = value_t : : number_unsigned )
{
return lhs . m_value . number_integer = = static_cast < number_integer_t > ( rhs . m_value . number_unsigned ) ;
}
return false ;
}
/*!
@ brief comparison : equal
@ copydoc operator = = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator = = ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs = = basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : equal
@ copydoc operator = = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator = = ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) = = rhs ) ;
}
/*!
@ brief comparison : not equal
Compares two JSON values for inequality by calculating ` not ( lhs = = rhs ) ` .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether the values @ a lhs and @ a rhs are not equal
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__notequal }
@ since version 1.0 .0
*/
friend bool operator ! = ( const_reference lhs , const_reference rhs ) noexcept
{
return not ( lhs = = rhs ) ;
}
/*!
@ brief comparison : not equal
@ copydoc operator ! = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator ! = ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs ! = basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : not equal
@ copydoc operator ! = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator ! = ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) ! = rhs ) ;
}
/*!
@ brief comparison : less than
Compares whether one JSON value @ a lhs is less than another JSON value @ a
rhs according to the following rules :
- If @ a lhs and @ a rhs have the same type , the values are compared using
the default ` < ` operator .
- Integer and floating - point numbers are automatically converted before
comparison
- In case @ a lhs and @ a rhs have different types , the values are ignored
and the order of the types is considered , see
@ ref operator < ( const value_t , const value_t ) .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether @ a lhs is less than @ a rhs
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__less }
@ since version 1.0 .0
*/
friend bool operator < ( const_reference lhs , const_reference rhs ) noexcept
{
const auto lhs_type = lhs . type ( ) ;
const auto rhs_type = rhs . type ( ) ;
if ( lhs_type = = rhs_type )
{
switch ( lhs_type )
{
case value_t : : array :
{
//return *lhs.m_value.array < *rhs.m_value.array;
//return *lhs.m_value.array.operator<(rhs);
return ( * lhs . m_value . array ) < * rhs . m_value . array ;
// return nlohmann::detail::operator<(lhs, rhs);
}
case value_t : : object :
{
return * lhs . m_value . object < * rhs . m_value . object ;
}
case value_t : : null :
{
return false ;
}
case value_t : : string :
{
return * lhs . m_value . string < * rhs . m_value . string ;
}
case value_t : : boolean :
{
return lhs . m_value . boolean < rhs . m_value . boolean ;
}
case value_t : : number_integer :
{
return lhs . m_value . number_integer < rhs . m_value . number_integer ;
}
case value_t : : number_unsigned :
{
return lhs . m_value . number_unsigned < rhs . m_value . number_unsigned ;
}
case value_t : : number_float :
{
return lhs . m_value . number_float < rhs . m_value . number_float ;
}
default :
{
return false ;
}
}
}
else if ( lhs_type = = value_t : : number_integer and rhs_type = = value_t : : number_float )
{
return static_cast < number_float_t > ( lhs . m_value . number_integer ) < rhs . m_value . number_float ;
}
else if ( lhs_type = = value_t : : number_float and rhs_type = = value_t : : number_integer )
{
return lhs . m_value . number_float < static_cast < number_float_t > ( rhs . m_value . number_integer ) ;
}
else if ( lhs_type = = value_t : : number_unsigned and rhs_type = = value_t : : number_float )
{
return static_cast < number_float_t > ( lhs . m_value . number_unsigned ) < rhs . m_value . number_float ;
}
else if ( lhs_type = = value_t : : number_float and rhs_type = = value_t : : number_unsigned )
{
return lhs . m_value . number_float < static_cast < number_float_t > ( rhs . m_value . number_unsigned ) ;
}
else if ( lhs_type = = value_t : : number_integer and rhs_type = = value_t : : number_unsigned )
{
return lhs . m_value . number_integer < static_cast < number_integer_t > ( rhs . m_value . number_unsigned ) ;
}
else if ( lhs_type = = value_t : : number_unsigned and rhs_type = = value_t : : number_integer )
{
return static_cast < number_integer_t > ( lhs . m_value . number_unsigned ) < rhs . m_value . number_integer ;
}
// We only reach this line if we cannot compare values. In that case,
// we compare types. Note we have to call the operator explicitly,
// because MSVC has problems otherwise.
return operator < ( lhs_type , rhs_type ) ;
}
/*!
@ brief comparison : less than
@ copydoc operator < ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator < ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs < basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : less than
@ copydoc operator < ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator < ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) < rhs ) ;
}
/*!
@ brief comparison : less than or equal
Compares whether one JSON value @ a lhs is less than or equal to another
JSON value by calculating ` not ( rhs < lhs ) ` .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether @ a lhs is less than or equal to @ a rhs
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__greater }
@ since version 1.0 .0
*/
friend bool operator < = ( const_reference lhs , const_reference rhs ) noexcept
{
return not ( rhs < lhs ) ;
}
/*!
@ brief comparison : less than or equal
@ copydoc operator < = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator < = ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs < = basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : less than or equal
@ copydoc operator < = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator < = ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) < = rhs ) ;
}
/*!
@ brief comparison : greater than
Compares whether one JSON value @ a lhs is greater than another
JSON value by calculating ` not ( lhs < = rhs ) ` .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether @ a lhs is greater than to @ a rhs
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__lessequal }
@ since version 1.0 .0
*/
friend bool operator > ( const_reference lhs , const_reference rhs ) noexcept
{
return not ( lhs < = rhs ) ;
}
/*!
@ brief comparison : greater than
@ copydoc operator > ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator > ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs > basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : greater than
@ copydoc operator > ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator > ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) > rhs ) ;
}
/*!
@ brief comparison : greater than or equal
Compares whether one JSON value @ a lhs is greater than or equal to another
JSON value by calculating ` not ( lhs < rhs ) ` .
@ param [ in ] lhs first JSON value to consider
@ param [ in ] rhs second JSON value to consider
@ return whether @ a lhs is greater than or equal to @ a rhs
@ complexity Linear .
@ liveexample { The example demonstrates comparing several JSON
types . , operator__greaterequal }
@ since version 1.0 .0
*/
friend bool operator > = ( const_reference lhs , const_reference rhs ) noexcept
{
return not ( lhs < rhs ) ;
}
/*!
@ brief comparison : greater than or equal
@ copydoc operator > = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator > = ( const_reference lhs , const ScalarType rhs ) noexcept
{
return ( lhs > = basic_json ( rhs ) ) ;
}
/*!
@ brief comparison : greater than or equal
@ copydoc operator > = ( const_reference , const_reference )
*/
template < typename ScalarType , typename std : : enable_if <
std : : is_scalar < ScalarType > : : value , int > : : type = 0 >
friend bool operator > = ( const ScalarType lhs , const_reference rhs ) noexcept
{
return ( basic_json ( lhs ) > = rhs ) ;
}
/// @}
private :
/////////////////////
// output adapters //
/////////////////////
/// abstract output adapter interface
template < typename CharType >
class output_adapter
{
public :
virtual void write_character ( CharType c ) = 0 ;
virtual void write_characters ( const CharType * s , size_t length ) = 0 ;
virtual ~ output_adapter ( ) { }
static std : : shared_ptr < output_adapter < CharType > > create ( std : : vector < CharType > & vec )
{
return std : : shared_ptr < output_adapter > ( new output_vector_adapter < CharType > ( vec ) ) ;
}
static std : : shared_ptr < output_adapter < CharType > > create ( std : : ostream & s )
{
return std : : shared_ptr < output_adapter > ( new output_stream_adapter < CharType > ( s ) ) ;
}
static std : : shared_ptr < output_adapter < CharType > > create ( std : : string & s )
{
return std : : shared_ptr < output_adapter > ( new output_string_adapter < CharType > ( s ) ) ;
}
} ;
/// a type to simplify interfaces
template < typename CharType >
using output_adapter_t = std : : shared_ptr < output_adapter < CharType > > ;
/// output adapter for byte vectors
template < typename CharType >
class output_vector_adapter : public output_adapter < CharType >
{
public :
output_vector_adapter ( std : : vector < CharType > & vec )
: v ( vec )
{ }
void write_character ( CharType c ) override
{
v . push_back ( c ) ;
}
void write_characters ( const CharType * s , size_t length ) override
{
std : : copy ( s , s + length , std : : back_inserter ( v ) ) ;
}
private :
std : : vector < CharType > & v ;
} ;
/// putput adatpter for output streams
template < typename CharType >
class output_stream_adapter : public output_adapter < CharType >
{
public :
output_stream_adapter ( std : : basic_ostream < CharType > & s )
: stream ( s )
{ }
void write_character ( CharType c ) override
{
stream . put ( c ) ;
}
void write_characters ( const CharType * s , size_t length ) override
{
stream . write ( s , static_cast < std : : streamsize > ( length ) ) ;
}
private :
std : : basic_ostream < CharType > & stream ;
} ;
/// output adapter for basic_string
template < typename CharType >
class output_string_adapter : public output_adapter < CharType >
{
public :
output_string_adapter ( std : : string & s )
: str ( s )
{ }
void write_character ( CharType c ) override
{
str . push_back ( c ) ;
}
void write_characters ( const CharType * s , size_t length ) override
{
str . append ( s , length ) ;
}
private :
std : : basic_string < CharType > & str ;
} ;
///////////////////
// serialization //
///////////////////
/// @name serialization
/// @{
private :
/*!
@ brief wrapper around the serialization functions
*/
class serializer
{
private :
serializer ( const serializer & ) = delete ;
serializer & operator = ( const serializer & ) = delete ;
public :
/*!
@ param [ in ] s output stream to serialize to
@ param [ in ] ichar indentation character to use
*/
serializer ( output_adapter_t < char > s , const char ichar )
: o ( s ) , loc ( std : : localeconv ( ) ) ,
thousands_sep ( ! loc - > thousands_sep ? ' \0 ' : loc - > thousands_sep [ 0 ] ) ,
decimal_point ( ! loc - > decimal_point ? ' \0 ' : loc - > decimal_point [ 0 ] ) ,
indent_char ( ichar ) , indent_string ( 512 , indent_char )
{ }
/*!
@ brief internal implementation of the serialization function
This function is called by the public member function dump and
organizes the serialization internally . The indentation level is
propagated as additional parameter . In case of arrays and objects , the
function is called recursively .
- strings and object keys are escaped using ` escape_string ( ) `
- integer numbers are converted implicitly via ` operator < < `
- floating - point numbers are converted to a string using ` " %g " ` format
@ param [ in ] val value to serialize
@ param [ in ] pretty_print whether the output shall be pretty - printed
@ param [ in ] indent_step the indent level
@ param [ in ] current_indent the current indent level ( only used internally )
*/
void dump ( const basic_json & val ,
const bool pretty_print ,
const unsigned int indent_step ,
const unsigned int current_indent = 0 )
{
switch ( val . m_type )
{
case value_t : : object :
{
if ( val . m_value . object - > empty ( ) )
{
o - > write_characters ( " {} " , 2 ) ;
return ;
}
if ( pretty_print )
{
o - > write_characters ( " { \n " , 2 ) ;
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step ;
if ( indent_string . size ( ) < new_indent )
{
indent_string . resize ( new_indent , ' ' ) ;
}
// first n-1 elements
auto i = val . m_value . object - > cbegin ( ) ;
for ( size_t cnt = 0 ; cnt < val . m_value . object - > size ( ) - 1 ; + + cnt , + + i )
{
o - > write_characters ( indent_string . c_str ( ) , new_indent ) ;
o - > write_character ( ' \" ' ) ;
dump_escaped ( i - > first ) ;
o - > write_characters ( " \" : " , 3 ) ;
dump ( i - > second , true , indent_step , new_indent ) ;
o - > write_characters ( " , \n " , 2 ) ;
}
// last element
assert ( i ! = val . m_value . object - > cend ( ) ) ;
o - > write_characters ( indent_string . c_str ( ) , new_indent ) ;
o - > write_character ( ' \" ' ) ;
dump_escaped ( i - > first ) ;
o - > write_characters ( " \" : " , 3 ) ;
dump ( i - > second , true , indent_step , new_indent ) ;
o - > write_character ( ' \n ' ) ;
o - > write_characters ( indent_string . c_str ( ) , current_indent ) ;
o - > write_character ( ' } ' ) ;
}
else
{
o - > write_character ( ' { ' ) ;
// first n-1 elements
auto i = val . m_value . object - > cbegin ( ) ;
for ( size_t cnt = 0 ; cnt < val . m_value . object - > size ( ) - 1 ; + + cnt , + + i )
{
o - > write_character ( ' \" ' ) ;
dump_escaped ( i - > first ) ;
o - > write_characters ( " \" : " , 2 ) ;
dump ( i - > second , false , indent_step , current_indent ) ;
o - > write_character ( ' , ' ) ;
}
// last element
assert ( i ! = val . m_value . object - > cend ( ) ) ;
o - > write_character ( ' \" ' ) ;
dump_escaped ( i - > first ) ;
o - > write_characters ( " \" : " , 2 ) ;
dump ( i - > second , false , indent_step , current_indent ) ;
o - > write_character ( ' } ' ) ;
}
return ;
}
case value_t : : array :
{
if ( val . m_value . array - > empty ( ) )
{
o - > write_characters ( " [] " , 2 ) ;
return ;
}
if ( pretty_print )
{
o - > write_characters ( " [ \n " , 2 ) ;
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step ;
if ( indent_string . size ( ) < new_indent )
{
indent_string . resize ( new_indent , ' ' ) ;
}
// first n-1 elements
for ( auto i = val . m_value . array - > cbegin ( ) ; i ! = val . m_value . array - > cend ( ) - 1 ; + + i )
{
o - > write_characters ( indent_string . c_str ( ) , new_indent ) ;
dump ( * i , true , indent_step , new_indent ) ;
o - > write_characters ( " , \n " , 2 ) ;
}
// last element
assert ( not val . m_value . array - > empty ( ) ) ;
o - > write_characters ( indent_string . c_str ( ) , new_indent ) ;
dump ( val . m_value . array - > back ( ) , true , indent_step , new_indent ) ;
o - > write_character ( ' \n ' ) ;
o - > write_characters ( indent_string . c_str ( ) , current_indent ) ;
o - > write_character ( ' ] ' ) ;
}
else
{
o - > write_character ( ' [ ' ) ;
// first n-1 elements
for ( auto i = val . m_value . array - > cbegin ( ) ; i ! = val . m_value . array - > cend ( ) - 1 ; + + i )
{
dump ( * i , false , indent_step , current_indent ) ;
o - > write_character ( ' , ' ) ;
}
// last element
assert ( not val . m_value . array - > empty ( ) ) ;
dump ( val . m_value . array - > back ( ) , false , indent_step , current_indent ) ;
o - > write_character ( ' ] ' ) ;
}
return ;
}
case value_t : : string :
{
o - > write_character ( ' \" ' ) ;
dump_escaped ( * val . m_value . string ) ;
o - > write_character ( ' \" ' ) ;
return ;
}
case value_t : : boolean :
{
if ( val . m_value . boolean )
{
o - > write_characters ( " true " , 4 ) ;
}
else
{
o - > write_characters ( " false " , 5 ) ;
}
return ;
}
case value_t : : number_integer :
{
dump_integer ( val . m_value . number_integer ) ;
return ;
}
case value_t : : number_unsigned :
{
dump_integer ( val . m_value . number_unsigned ) ;
return ;
}
case value_t : : number_float :
{
dump_float ( val . m_value . number_float ) ;
return ;
}
case value_t : : discarded :
{
o - > write_characters ( " <discarded> " , 11 ) ;
return ;
}
case value_t : : null :
{
o - > write_characters ( " null " , 4 ) ;
return ;
}
}
}
private :
/*!
@ brief calculates the extra space to escape a JSON string
@ param [ in ] s the string to escape
@ return the number of characters required to escape string @ a s
@ complexity Linear in the length of string @ a s .
*/
static std : : size_t extra_space ( const string_t & s ) noexcept
{
return std : : accumulate ( s . begin ( ) , s . end ( ) , size_t { } ,
[ ] ( size_t res , typename string_t : : value_type c )
{
switch ( c )
{
case ' " ' :
case ' \\ ' :
case ' \b ' :
case ' \f ' :
case ' \n ' :
case ' \r ' :
case ' \t ' :
{
// from c (1 byte) to \x (2 bytes)
return res + 1 ;
}
case 0x00 :
case 0x01 :
case 0x02 :
case 0x03 :
case 0x04 :
case 0x05 :
case 0x06 :
case 0x07 :
case 0x0b :
case 0x0e :
case 0x0f :
case 0x10 :
case 0x11 :
case 0x12 :
case 0x13 :
case 0x14 :
case 0x15 :
case 0x16 :
case 0x17 :
case 0x18 :
case 0x19 :
case 0x1a :
case 0x1b :
case 0x1c :
case 0x1d :
case 0x1e :
case 0x1f :
{
// from c (1 byte) to \uxxxx (6 bytes)
return res + 5 ;
}
default :
{
return res ;
}
}
} ) ;
}
/*!
@ brief dump escaped string
Escape a string by replacing certain special characters by a sequence
of an escape character ( backslash ) and another character and other
control characters by a sequence of " \ u " followed by a four - digit hex
representation . The escaped string is written to output stream @ a o .
@ param [ in ] s the string to escape
@ complexity Linear in the length of string @ a s .
*/
void dump_escaped ( const string_t & s ) const
{
const auto space = extra_space ( s ) ;
if ( space = = 0 )
{
o - > write_characters ( s . c_str ( ) , s . size ( ) ) ;
return ;
}
// create a result string of necessary size
string_t result ( s . size ( ) + space , ' \\ ' ) ;
std : : size_t pos = 0 ;
for ( const auto & c : s )
{
switch ( c )
{
// quotation mark (0x22)
case ' " ' :
{
result [ pos + 1 ] = ' " ' ;
pos + = 2 ;
break ;
}
// reverse solidus (0x5c)
case ' \\ ' :
{
// nothing to change
pos + = 2 ;
break ;
}
// backspace (0x08)
case ' \b ' :
{
result [ pos + 1 ] = ' b ' ;
pos + = 2 ;
break ;
}
// formfeed (0x0c)
case ' \f ' :
{
result [ pos + 1 ] = ' f ' ;
pos + = 2 ;
break ;
}
// newline (0x0a)
case ' \n ' :
{
result [ pos + 1 ] = ' n ' ;
pos + = 2 ;
break ;
}
// carriage return (0x0d)
case ' \r ' :
{
result [ pos + 1 ] = ' r ' ;
pos + = 2 ;
break ;
}
// horizontal tab (0x09)
case ' \t ' :
{
result [ pos + 1 ] = ' t ' ;
pos + = 2 ;
break ;
}
case 0x00 :
case 0x01 :
case 0x02 :
case 0x03 :
case 0x04 :
case 0x05 :
case 0x06 :
case 0x07 :
case 0x0b :
case 0x0e :
case 0x0f :
case 0x10 :
case 0x11 :
case 0x12 :
case 0x13 :
case 0x14 :
case 0x15 :
case 0x16 :
case 0x17 :
case 0x18 :
case 0x19 :
case 0x1a :
case 0x1b :
case 0x1c :
case 0x1d :
case 0x1e :
case 0x1f :
{
// convert a number 0..15 to its hex representation
// (0..f)
static const char hexify [ 16 ] =
{
' 0 ' , ' 1 ' , ' 2 ' , ' 3 ' , ' 4 ' , ' 5 ' , ' 6 ' , ' 7 ' ,
' 8 ' , ' 9 ' , ' a ' , ' b ' , ' c ' , ' d ' , ' e ' , ' f '
} ;
// print character c as \uxxxx
for ( const char m :
{ ' u ' , ' 0 ' , ' 0 ' , hexify [ c > > 4 ] , hexify [ c & 0x0f ]
} )
{
result [ + + pos ] = m ;
}
+ + pos ;
break ;
}
default :
{
// all other characters are added as-is
result [ pos + + ] = c ;
break ;
}
}
}
assert ( pos = = s . size ( ) + space ) ;
o - > write_characters ( result . c_str ( ) , result . size ( ) ) ;
}
/*!
@ brief dump an integer
Dump a given integer to output stream @ a o . Works internally with
@ a number_buffer .
@ param [ in ] x integer number ( signed or unsigned ) to dump
@ tparam NumberType either @ a number_integer_t or @ a number_unsigned_t
*/
template < typename NumberType , detail : : enable_if_t <
std : : is_same < NumberType , number_unsigned_t > : : value or
std : : is_same < NumberType , number_integer_t > : : value , int > = 0 >
void dump_integer ( NumberType x )
{
// special case for "0"
if ( x = = 0 )
{
o - > write_character ( ' 0 ' ) ;
return ;
}
const bool is_negative = x < 0 ;
size_t i = 0 ;
// spare 1 byte for '\0'
while ( x ! = 0 and i < number_buffer . size ( ) - 1 )
{
const auto digit = std : : labs ( static_cast < long > ( x % 10 ) ) ;
number_buffer [ i + + ] = static_cast < char > ( ' 0 ' + digit ) ;
x / = 10 ;
}
// make sure the number has been processed completely
assert ( x = = 0 ) ;
if ( is_negative )
{
// make sure there is capacity for the '-'
assert ( i < number_buffer . size ( ) - 2 ) ;
number_buffer [ i + + ] = ' - ' ;
}
std : : reverse ( number_buffer . begin ( ) , number_buffer . begin ( ) + i ) ;
o - > write_characters ( number_buffer . data ( ) , i ) ;
}
/*!
@ brief dump a floating - point number
Dump a given floating - point number to output stream @ a o . Works
internally with @ a number_buffer .
@ param [ in ] x floating - point number to dump
*/
void dump_float ( number_float_t x )
{
// NaN / inf
if ( not std : : isfinite ( x ) or std : : isnan ( x ) )
{
o - > write_characters ( " null " , 4 ) ;
return ;
}
// special case for 0.0 and -0.0
if ( x = = 0 )
{
if ( std : : signbit ( x ) )
{
o - > write_characters ( " -0.0 " , 4 ) ;
}
else
{
o - > write_characters ( " 0.0 " , 3 ) ;
}
return ;
}
// get number of digits for a text -> float -> text round-trip
static constexpr auto d = std : : numeric_limits < number_float_t > : : digits10 ;
// the actual conversion
std : : ptrdiff_t len = snprintf ( number_buffer . data ( ) , number_buffer . size ( ) ,
" %.*g " , d , x ) ;
// negative value indicates an error
assert ( len > 0 ) ;
// check if buffer was large enough
assert ( static_cast < size_t > ( len ) < number_buffer . size ( ) ) ;
// erase thousands separator
if ( thousands_sep ! = ' \0 ' )
{
const auto end = std : : remove ( number_buffer . begin ( ) ,
number_buffer . begin ( ) + len ,
thousands_sep ) ;
std : : fill ( end , number_buffer . end ( ) , ' \0 ' ) ;
assert ( ( end - number_buffer . begin ( ) ) < = len ) ;
len = ( end - number_buffer . begin ( ) ) ;
}
// convert decimal point to '.'
if ( decimal_point ! = ' \0 ' and decimal_point ! = ' . ' )
{
for ( auto & c : number_buffer )
{
if ( c = = decimal_point )
{
c = ' . ' ;
break ;
}
}
}
o - > write_characters ( number_buffer . data ( ) , static_cast < size_t > ( len ) ) ;
// determine if need to append ".0"
const bool value_is_int_like = std : : none_of ( number_buffer . begin ( ) ,
number_buffer . begin ( ) + len + 1 ,
[ ] ( char c )
{
return c = = ' . ' or c = = ' e ' ;
} ) ;
if ( value_is_int_like )
{
o - > write_characters ( " .0 " , 2 ) ;
}
}
private :
/// the output of the serializer
output_adapter_t < char > o = nullptr ;
/// a (hopefully) large enough character buffer
std : : array < char , 64 > number_buffer { { } } ;
/// the locale
const std : : lconv * loc = nullptr ;
/// the locale's thousand separator character
const char thousands_sep = ' \0 ' ;
/// the locale's decimal point character
const char decimal_point = ' \0 ' ;
/// the indentation character
const char indent_char ;
/// the indentation string
string_t indent_string ;
} ;
public :
/*!
@ brief serialize to stream
Serialize the given JSON value @ a j to the output stream @ a o . The JSON
value will be serialized using the @ ref dump member function .
- The indentation of the output can be controlled with the member variable
` width ` of the output stream @ a o . For instance , using the manipulator
` std : : setw ( 4 ) ` on @ a o sets the indentation level to ` 4 ` and the
serialization result is the same as calling ` dump ( 4 ) ` .
- The indentation characrer can be controlled with the member variable
` fill ` of the output stream @ a o . For instance , the manipulator
` std : : setfill ( ' \ \ t ' ) ` sets indentation to use a tab character rather than
the default space character .
@ param [ in , out ] o stream to serialize to
@ param [ in ] j JSON value to serialize
@ return the stream @ a o
@ complexity Linear .
@ liveexample { The example below shows the serialization with different
parameters to ` width ` to adjust the indentation level . , operator_serialize }
@ since version 1.0 .0 ; indentaction character added in version 3.0 .0
*/
friend std : : ostream & operator < < ( std : : ostream & o , const basic_json & j )
{
// read width member and use it as indentation parameter if nonzero
const bool pretty_print = ( o . width ( ) > 0 ) ;
const auto indentation = ( pretty_print ? o . width ( ) : 0 ) ;
// reset width to 0 for subsequent calls to this stream
o . width ( 0 ) ;
// do the actual serialization
serializer s ( output_adapter < char > : : create ( o ) , o . fill ( ) ) ;
s . dump ( j , pretty_print , static_cast < unsigned int > ( indentation ) ) ;
return o ;
}
/*!
@ brief serialize to stream
@ deprecated This stream operator is deprecated and will be removed in a
future version of the library . Please use
@ ref std : : ostream & operator < < ( std : : ostream & , const basic_json & )
instead ; that is , replace calls like ` j > > o ; ` with ` o < < j ; ` .
*/
JSON_DEPRECATED
friend std : : ostream & operator > > ( const basic_json & j , std : : ostream & o )
{
return o < < j ;
}
/// @}
/////////////////////
// deserialization //
/////////////////////
/// @name deserialization
/// @{
/*!
@ brief deserialize from an array
This function reads from an array of 1 - byte values .
@ pre Each element of the container has a size of 1 byte . Violating this
precondition yields undefined behavior . * * This precondition is enforced
with a static assertion . * *
@ param [ in ] array array to read from
@ param [ in ] cb a parser callback function of type @ ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
( optional )
@ return result of the deserialization
@ throw parse_error .101 if a parse error occurs ; example : ` " " unexpected end
of input ; expected string literal " " `
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser . The complexity can be higher if the parser callback function
@ a cb has a super - linear complexity .
@ note A UTF - 8 byte order mark is silently ignored .
@ liveexample { The example below demonstrates the ` parse ( ) ` function reading
from an array . , parse__array__parser_callback_t }
@ since version 2.0 .3
*/
template < class T , std : : size_t N >
static basic_json parse ( T ( & array ) [ N ] ,
const parser_callback_t cb = nullptr )
{
// delegate the call to the iterator-range parse overload
return parse ( std : : begin ( array ) , std : : end ( array ) , cb ) ;
}
/*!
@ brief deserialize from string literal
@ tparam CharT character / literal type with size of 1 byte
@ param [ in ] s string literal to read a serialized JSON value from
@ param [ in ] cb a parser callback function of type @ ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
( optional )
@ return result of the deserialization
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser . The complexity can be higher if the parser callback function
@ a cb has a super - linear complexity .
@ note A UTF - 8 byte order mark is silently ignored .
@ note String containers like ` std : : string ` or @ ref string_t can be parsed
with @ ref parse ( const ContiguousContainer & , const parser_callback_t )
@ liveexample { The example below demonstrates the ` parse ( ) ` function with
and without callback function . , parse__string__parser_callback_t }
@ sa @ ref parse ( std : : istream & , const parser_callback_t ) for a version that
reads from an input stream
@ since version 1.0 .0 ( originally for @ ref string_t )
*/
template < typename CharT , typename std : : enable_if <
std : : is_pointer < CharT > : : value and
std : : is_integral < typename std : : remove_pointer < CharT > : : type > : : value and
sizeof ( typename std : : remove_pointer < CharT > : : type ) = = 1 , int > : : type = 0 >
static basic_json parse ( const CharT s ,
const parser_callback_t cb = nullptr )
{
return parser ( input_adapter : : create ( s ) , cb ) . parse ( true ) ;
}
/*!
@ brief deserialize from stream
@ param [ in , out ] i stream to read a serialized JSON value from
@ param [ in ] cb a parser callback function of type @ ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
( optional )
@ return result of the deserialization
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ throw parse_error .111 if input stream is in a bad state
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser . The complexity can be higher if the parser callback function
@ a cb has a super - linear complexity .
@ note A UTF - 8 byte order mark is silently ignored .
@ liveexample { The example below demonstrates the ` parse ( ) ` function with
and without callback function . , parse__istream__parser_callback_t }
@ sa @ ref parse ( const CharT , const parser_callback_t ) for a version
that reads from a string
@ since version 1.0 .0
*/
static basic_json parse ( std : : istream & i ,
const parser_callback_t cb = nullptr )
{
return parser ( input_adapter : : create ( i ) , cb ) . parse ( true ) ;
}
/*!
@ copydoc parse ( std : : istream & , const parser_callback_t )
*/
static basic_json parse ( std : : istream & & i ,
const parser_callback_t cb = nullptr )
{
return parser ( input_adapter : : create ( i ) , cb ) . parse ( true ) ;
}
/*!
@ brief deserialize from an iterator range with contiguous storage
This function reads from an iterator range of a container with contiguous
storage of 1 - byte values . Compatible container types include
` std : : vector ` , ` std : : string ` , ` std : : array ` , ` std : : valarray ` , and
` std : : initializer_list ` . Furthermore , C - style arrays can be used with
` std : : begin ( ) ` / ` std : : end ( ) ` . User - defined containers can be used as long
as they implement random - access iterators and a contiguous storage .
@ pre The iterator range is contiguous . Violating this precondition yields
undefined behavior . * * This precondition is enforced with an assertion . * *
@ pre Each element in the range has a size of 1 byte . Violating this
precondition yields undefined behavior . * * This precondition is enforced
with a static assertion . * *
@ warning There is no way to enforce all preconditions at compile - time . If
the function is called with noncompliant iterators and with
assertions switched off , the behavior is undefined and will most
likely yield segmentation violation .
@ tparam IteratorType iterator of container with contiguous storage
@ param [ in ] first begin of the range to parse ( included )
@ param [ in ] last end of the range to parse ( excluded )
@ param [ in ] cb a parser callback function of type @ ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
( optional )
@ return result of the deserialization
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser . The complexity can be higher if the parser callback function
@ a cb has a super - linear complexity .
@ note A UTF - 8 byte order mark is silently ignored .
@ liveexample { The example below demonstrates the ` parse ( ) ` function reading
from an iterator range . , parse__iteratortype__parser_callback_t }
@ since version 2.0 .3
*/
template < class IteratorType , typename std : : enable_if <
std : : is_base_of <
std : : random_access_iterator_tag ,
typename std : : iterator_traits < IteratorType > : : iterator_category > : : value , int > : : type = 0 >
static basic_json parse ( IteratorType first , IteratorType last ,
const parser_callback_t cb = nullptr )
{
return parser ( input_adapter : : create ( first , last ) , cb ) . parse ( true ) ;
}
/*!
@ brief deserialize from a container with contiguous storage
This function reads from a container with contiguous storage of 1 - byte
values . Compatible container types include ` std : : vector ` , ` std : : string ` ,
` std : : array ` , and ` std : : initializer_list ` . User - defined containers can be
used as long as they implement random - access iterators and a contiguous
storage .
@ pre The container storage is contiguous . Violating this precondition
yields undefined behavior . * * This precondition is enforced with an
assertion . * *
@ pre Each element of the container has a size of 1 byte . Violating this
precondition yields undefined behavior . * * This precondition is enforced
with a static assertion . * *
@ warning There is no way to enforce all preconditions at compile - time . If
the function is called with a noncompliant container and with
assertions switched off , the behavior is undefined and will most
likely yield segmentation violation .
@ tparam ContiguousContainer container type with contiguous storage
@ param [ in ] c container to read from
@ param [ in ] cb a parser callback function of type @ ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
( optional )
@ return result of the deserialization
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser . The complexity can be higher if the parser callback function
@ a cb has a super - linear complexity .
@ note A UTF - 8 byte order mark is silently ignored .
@ liveexample { The example below demonstrates the ` parse ( ) ` function reading
from a contiguous container . , parse__contiguouscontainer__parser_callback_t }
@ since version 2.0 .3
*/
template < class ContiguousContainer , typename std : : enable_if <
not std : : is_pointer < ContiguousContainer > : : value and
std : : is_base_of <
std : : random_access_iterator_tag ,
typename std : : iterator_traits < decltype ( std : : begin ( std : : declval < ContiguousContainer const > ( ) ) ) > : : iterator_category > : : value
, int > : : type = 0 >
static basic_json parse ( const ContiguousContainer & c ,
const parser_callback_t cb = nullptr )
{
// delegate the call to the iterator-range parse overload
return parse ( std : : begin ( c ) , std : : end ( c ) , cb ) ;
}
/*!
@ brief deserialize from stream
@ deprecated This stream operator is deprecated and will be removed in a
future version of the library . Please use
@ ref std : : istream & operator > > ( std : : istream & , basic_json & )
instead ; that is , replace calls like ` j < < i ; ` with ` i > > j ; ` .
*/
JSON_DEPRECATED
friend std : : istream & operator < < ( basic_json & j , std : : istream & i )
{
j = parser ( input_adapter : : create ( i ) ) . parse ( false ) ;
return i ;
}
/*!
@ brief deserialize from stream
Deserializes an input stream to a JSON value .
@ param [ in , out ] i input stream to read a serialized JSON value from
@ param [ in , out ] j JSON value to write the deserialized input to
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
@ throw parse_error .111 if input stream is in a bad state
@ complexity Linear in the length of the input . The parser is a predictive
LL ( 1 ) parser .
@ note A UTF - 8 byte order mark is silently ignored .
@ liveexample { The example below shows how a JSON value is constructed by
reading a serialization from a stream . , operator_deserialize }
@ sa parse ( std : : istream & , const parser_callback_t ) for a variant with a
parser callback function to filter values while parsing
@ since version 1.0 .0
*/
friend std : : istream & operator > > ( std : : istream & i , basic_json & j )
{
j = parser ( input_adapter : : create ( i ) ) . parse ( false ) ;
return i ;
}
/// @}
///////////////////////////
// convenience functions //
///////////////////////////
/*!
@ brief return the type as string
Returns the type name as string to be used in error messages - usually to
indicate that a function was called on a wrong JSON type .
@ return basically a string representation of a the @ a m_type member
@ complexity Constant .
@ liveexample { The following code exemplifies ` type_name ( ) ` for all JSON
types . , type_name }
@ since version 1.0 .0 , public since 2.1 .0
*/
std : : string type_name ( ) const
{
{
switch ( m_type )
{
case value_t : : null :
return " null " ;
case value_t : : object :
return " object " ;
case value_t : : array :
return " array " ;
case value_t : : string :
return " string " ;
case value_t : : boolean :
return " boolean " ;
case value_t : : discarded :
return " discarded " ;
default :
return " number " ;
}
}
}
private :
//////////////////////
// member variables //
//////////////////////
/// the type of the current element
value_t m_type = value_t : : null ;
/// the value of the current element
json_value m_value = { } ;
private :
///////////////
// iterators //
///////////////
/*!
@ brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types ( boolean , number ,
string ) . It ' s only purpose is to allow the iterator / const_iterator classes
to " iterate " over primitive values . Internally , the iterator is modeled by
a ` difference_type ` variable . Value begin_value ( ` 0 ` ) models the begin ,
end_value ( ` 1 ` ) models past the end .
*/
class primitive_iterator_t
{
public :
difference_type get_value ( ) const noexcept
{
return m_it ;
}
/// set iterator to a defined beginning
void set_begin ( ) noexcept
{
m_it = begin_value ;
}
/// set iterator to a defined past the end
void set_end ( ) noexcept
{
m_it = end_value ;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin ( ) const noexcept
{
return ( m_it = = begin_value ) ;
}
/// return whether the iterator is at end
constexpr bool is_end ( ) const noexcept
{
return ( m_it = = end_value ) ;
}
friend constexpr bool operator = = ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it = = rhs . m_it ;
}
friend constexpr bool operator ! = ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return ! ( lhs = = rhs ) ;
}
friend constexpr bool operator < ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it < rhs . m_it ;
}
friend constexpr bool operator < = ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it < = rhs . m_it ;
}
friend constexpr bool operator > ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it > rhs . m_it ;
}
friend constexpr bool operator > = ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it > = rhs . m_it ;
}
primitive_iterator_t operator + ( difference_type i )
{
auto result = * this ;
result + = i ;
return result ;
}
friend constexpr difference_type operator - ( primitive_iterator_t lhs , primitive_iterator_t rhs ) noexcept
{
return lhs . m_it - rhs . m_it ;
}
friend std : : ostream & operator < < ( std : : ostream & os , primitive_iterator_t it )
{
return os < < it . m_it ;
}
primitive_iterator_t & operator + + ( )
{
+ + m_it ;
return * this ;
}
primitive_iterator_t operator + + ( int )
{
auto result = * this ;
m_it + + ;
return result ;
}
primitive_iterator_t & operator - - ( )
{
- - m_it ;
return * this ;
}
primitive_iterator_t operator - - ( int )
{
auto result = * this ;
m_it - - ;
return result ;
}
primitive_iterator_t & operator + = ( difference_type n )
{
m_it + = n ;
return * this ;
}
primitive_iterator_t & operator - = ( difference_type n )
{
m_it - = n ;
return * this ;
}
private :
static constexpr difference_type begin_value = 0 ;
static constexpr difference_type end_value = begin_value + 1 ;
/// iterator as signed integer type
difference_type m_it = std : : numeric_limits < std : : ptrdiff_t > : : denorm_min ( ) ;
} ;
/*!
@ brief an iterator value
@ note This structure could easily be a union , but MSVC currently does not
allow unions members with complex constructors , see
https : //github.com/nlohmann/json/pull/105.
*/
struct internal_iterator
{
/// iterator for JSON objects
typename object_t : : iterator object_iterator ;
/// iterator for JSON arrays
typename array_t : : iterator array_iterator ;
/// generic iterator for all other types
primitive_iterator_t primitive_iterator ;
/// create an uninitialized internal_iterator
internal_iterator ( ) noexcept
: object_iterator ( ) , array_iterator ( ) , primitive_iterator ( )
{ }
} ;
/// proxy class for the iterator_wrapper functions
template < typename IteratorType >
class iteration_proxy
{
private :
/// helper class for iteration
class iteration_proxy_internal
{
private :
/// the iterator
IteratorType anchor ;
/// an index for arrays (used to create key names)
size_t array_index = 0 ;
public :
explicit iteration_proxy_internal ( IteratorType it ) noexcept
: anchor ( it )
{ }
/// dereference operator (needed for range-based for)
iteration_proxy_internal & operator * ( )
{
return * this ;
}
/// increment operator (needed for range-based for)
iteration_proxy_internal & operator + + ( )
{
+ + anchor ;
+ + array_index ;
return * this ;
}
/// inequality operator (needed for range-based for)
bool operator ! = ( const iteration_proxy_internal & o ) const
{
return anchor ! = o . anchor ;
}
/// return key of the iterator
typename basic_json : : string_t key ( ) const
{
assert ( anchor . m_object ! = nullptr ) ;
switch ( anchor . m_object - > type ( ) )
{
// use integer array index as key
case value_t : : array :
{
return std : : to_string ( array_index ) ;
}
// use key from the object
case value_t : : object :
{
return anchor . key ( ) ;
}
// use an empty key for all primitive types
default :
{
return " " ;
}
}
}
/// return value of the iterator
typename IteratorType : : reference value ( ) const
{
return anchor . value ( ) ;
}
} ;
/// the container to iterate
typename IteratorType : : reference container ;
public :
/// construct iteration proxy from a container
explicit iteration_proxy ( typename IteratorType : : reference cont )
: container ( cont )
{ }
/// return iterator begin (needed for range-based for)
iteration_proxy_internal begin ( ) noexcept
{
return iteration_proxy_internal ( container . begin ( ) ) ;
}
/// return iterator end (needed for range-based for)
iteration_proxy_internal end ( ) noexcept
{
return iteration_proxy_internal ( container . end ( ) ) ;
}
} ;
public :
/*!
@ brief a template for a random access iterator for the @ ref basic_json class
This class implements a both iterators ( iterator and const_iterator ) for the
@ ref basic_json class .
@ note An iterator is called * initialized * when a pointer to a JSON value
has been set ( e . g . , by a constructor or a copy assignment ) . If the
iterator is default - constructed , it is * uninitialized * and most
methods are undefined . * * The library uses assertions to detect calls
on uninitialized iterators . * *
@ requirement The class satisfies the following concept requirements :
- [ RandomAccessIterator ] ( http : //en.cppreference.com/w/cpp/concept/RandomAccessIterator):
The iterator that can be moved to point ( forward and backward ) to any
element in constant time .
@ since version 1.0 .0 , simplified in version 2.0 .9
*/
template < typename U >
class iter_impl : public std : : iterator < std : : random_access_iterator_tag , U >
{
/// allow basic_json to access private members
friend class basic_json ;
// make sure U is basic_json or const basic_json
static_assert ( std : : is_same < U , basic_json > : : value
or std : : is_same < U , const basic_json > : : value ,
" iter_impl only accepts (const) basic_json " ) ;
public :
/// the type of the values when the iterator is dereferenced
using value_type = typename basic_json : : value_type ;
/// a type to represent differences between iterators
using difference_type = typename basic_json : : difference_type ;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename std : : conditional < std : : is_const < U > : : value ,
typename basic_json : : const_pointer ,
typename basic_json : : pointer > : : type ;
/// defines a reference to the type iterated over (value_type)
using reference = typename std : : conditional < std : : is_const < U > : : value ,
typename basic_json : : const_reference ,
typename basic_json : : reference > : : type ;
/// the category of the iterator
using iterator_category = std : : bidirectional_iterator_tag ;
/// default constructor
iter_impl ( ) = default ;
/*!
@ brief constructor for a given JSON instance
@ param [ in ] object pointer to a JSON object for this iterator
@ pre object ! = nullptr
@ post The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
explicit iter_impl ( pointer object ) noexcept
: m_object ( object )
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
m_it . object_iterator = typename object_t : : iterator ( ) ;
break ;
}
case basic_json : : value_t : : array :
{
m_it . array_iterator = typename array_t : : iterator ( ) ;
break ;
}
default :
{
m_it . primitive_iterator = primitive_iterator_t ( ) ;
break ;
}
}
}
/*
Use operator ` const_iterator ` instead of ` const_iterator ( const iterator &
other ) noexcept ` to avoid two class definitions for @ ref iterator and
@ ref const_iterator .
This function is only called if this class is an @ ref iterator . If this
class is a @ ref const_iterator this function is not called .
*/
operator const_iterator ( ) const
{
const_iterator ret ;
if ( m_object )
{
ret . m_object = m_object ;
ret . m_it = m_it ;
}
return ret ;
}
/*!
@ brief copy constructor
@ param [ in ] other iterator to copy from
@ note It is not checked whether @ a other is initialized .
*/
iter_impl ( const iter_impl & other ) noexcept
: m_object ( other . m_object ) , m_it ( other . m_it )
{ }
/*!
@ brief copy assignment
@ param [ in , out ] other iterator to copy from
@ note It is not checked whether @ a other is initialized .
*/
iter_impl & operator = ( iter_impl other ) noexcept (
std : : is_nothrow_move_constructible < pointer > : : value and
std : : is_nothrow_move_assignable < pointer > : : value and
std : : is_nothrow_move_constructible < internal_iterator > : : value and
std : : is_nothrow_move_assignable < internal_iterator > : : value
)
{
std : : swap ( m_object , other . m_object ) ;
std : : swap ( m_it , other . m_it ) ;
return * this ;
}
private :
/*!
@ brief set the iterator to the first value
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
void set_begin ( ) noexcept
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
m_it . object_iterator = m_object - > m_value . object - > begin ( ) ;
break ;
}
case basic_json : : value_t : : array :
{
m_it . array_iterator = m_object - > m_value . array - > begin ( ) ;
break ;
}
case basic_json : : value_t : : null :
{
// set to end so begin()==end() is true: null is empty
m_it . primitive_iterator . set_end ( ) ;
break ;
}
default :
{
m_it . primitive_iterator . set_begin ( ) ;
break ;
}
}
}
/*!
@ brief set the iterator past the last value
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
void set_end ( ) noexcept
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
m_it . object_iterator = m_object - > m_value . object - > end ( ) ;
break ;
}
case basic_json : : value_t : : array :
{
m_it . array_iterator = m_object - > m_value . array - > end ( ) ;
break ;
}
default :
{
m_it . primitive_iterator . set_end ( ) ;
break ;
}
}
}
public :
/*!
@ brief return a reference to the value pointed to by the iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
reference operator * ( ) const
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
assert ( m_it . object_iterator ! = m_object - > m_value . object - > end ( ) ) ;
return m_it . object_iterator - > second ;
}
case basic_json : : value_t : : array :
{
assert ( m_it . array_iterator ! = m_object - > m_value . array - > end ( ) ) ;
return * m_it . array_iterator ;
}
case basic_json : : value_t : : null :
{
JSON_THROW ( invalid_iterator : : create ( 214 , " cannot get value " ) ) ;
}
default :
{
if ( m_it . primitive_iterator . is_begin ( ) )
{
return * m_object ;
}
JSON_THROW ( invalid_iterator : : create ( 214 , " cannot get value " ) ) ;
}
}
}
/*!
@ brief dereference the iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
pointer operator - > ( ) const
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
assert ( m_it . object_iterator ! = m_object - > m_value . object - > end ( ) ) ;
return & ( m_it . object_iterator - > second ) ;
}
case basic_json : : value_t : : array :
{
assert ( m_it . array_iterator ! = m_object - > m_value . array - > end ( ) ) ;
return & * m_it . array_iterator ;
}
default :
{
if ( m_it . primitive_iterator . is_begin ( ) )
{
return m_object ;
}
JSON_THROW ( invalid_iterator : : create ( 214 , " cannot get value " ) ) ;
}
}
}
/*!
@ brief post - increment ( it + + )
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl operator + + ( int )
{
auto result = * this ;
+ + ( * this ) ;
return result ;
}
/*!
@ brief pre - increment ( + + it )
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl & operator + + ( )
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
std : : advance ( m_it . object_iterator , 1 ) ;
break ;
}
case basic_json : : value_t : : array :
{
std : : advance ( m_it . array_iterator , 1 ) ;
break ;
}
default :
{
+ + m_it . primitive_iterator ;
break ;
}
}
return * this ;
}
/*!
@ brief post - decrement ( it - - )
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl operator - - ( int )
{
auto result = * this ;
- - ( * this ) ;
return result ;
}
/*!
@ brief pre - decrement ( - - it )
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl & operator - - ( )
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
std : : advance ( m_it . object_iterator , - 1 ) ;
break ;
}
case basic_json : : value_t : : array :
{
std : : advance ( m_it . array_iterator , - 1 ) ;
break ;
}
default :
{
- - m_it . primitive_iterator ;
break ;
}
}
return * this ;
}
/*!
@ brief comparison : equal
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator = = ( const iter_impl & other ) const
{
// if objects are not the same, the comparison is undefined
if ( m_object ! = other . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 212 , " cannot compare iterators of different containers " ) ) ;
}
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
return ( m_it . object_iterator = = other . m_it . object_iterator ) ;
}
case basic_json : : value_t : : array :
{
return ( m_it . array_iterator = = other . m_it . array_iterator ) ;
}
default :
{
return ( m_it . primitive_iterator = = other . m_it . primitive_iterator ) ;
}
}
}
/*!
@ brief comparison : not equal
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator ! = ( const iter_impl & other ) const
{
return not operator = = ( other ) ;
}
/*!
@ brief comparison : smaller
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator < ( const iter_impl & other ) const
{
// if objects are not the same, the comparison is undefined
if ( m_object ! = other . m_object )
{
JSON_THROW ( invalid_iterator : : create ( 212 , " cannot compare iterators of different containers " ) ) ;
}
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
JSON_THROW ( invalid_iterator : : create ( 213 , " cannot compare order of object iterators " ) ) ;
}
case basic_json : : value_t : : array :
{
return ( m_it . array_iterator < other . m_it . array_iterator ) ;
}
default :
{
return ( m_it . primitive_iterator < other . m_it . primitive_iterator ) ;
}
}
}
/*!
@ brief comparison : less than or equal
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator < = ( const iter_impl & other ) const
{
return not other . operator < ( * this ) ;
}
/*!
@ brief comparison : greater than
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator > ( const iter_impl & other ) const
{
return not operator < = ( other ) ;
}
/*!
@ brief comparison : greater than or equal
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
bool operator > = ( const iter_impl & other ) const
{
return not operator < ( other ) ;
}
/*!
@ brief add to iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl & operator + = ( difference_type i )
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
JSON_THROW ( invalid_iterator : : create ( 209 , " cannot use offsets with object iterators " ) ) ;
}
case basic_json : : value_t : : array :
{
std : : advance ( m_it . array_iterator , i ) ;
break ;
}
default :
{
m_it . primitive_iterator + = i ;
break ;
}
}
return * this ;
}
/*!
@ brief subtract from iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl & operator - = ( difference_type i )
{
return operator + = ( - i ) ;
}
/*!
@ brief add to iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl operator + ( difference_type i )
{
auto result = * this ;
result + = i ;
return result ;
}
/*!
@ brief subtract from iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
iter_impl operator - ( difference_type i )
{
auto result = * this ;
result - = i ;
return result ;
}
/*!
@ brief return difference
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
difference_type operator - ( const iter_impl & other ) const
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
JSON_THROW ( invalid_iterator : : create ( 209 , " cannot use offsets with object iterators " ) ) ;
}
case basic_json : : value_t : : array :
{
return m_it . array_iterator - other . m_it . array_iterator ;
}
default :
{
return m_it . primitive_iterator - other . m_it . primitive_iterator ;
}
}
}
/*!
@ brief access to successor
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
reference operator [ ] ( difference_type n ) const
{
assert ( m_object ! = nullptr ) ;
switch ( m_object - > m_type )
{
case basic_json : : value_t : : object :
{
JSON_THROW ( invalid_iterator : : create ( 208 , " cannot use operator[] for object iterators " ) ) ;
}
case basic_json : : value_t : : array :
{
return * std : : next ( m_it . array_iterator , n ) ;
}
case basic_json : : value_t : : null :
{
JSON_THROW ( invalid_iterator : : create ( 214 , " cannot get value " ) ) ;
}
default :
{
if ( m_it . primitive_iterator . get_value ( ) = = - n )
{
return * m_object ;
}
JSON_THROW ( invalid_iterator : : create ( 214 , " cannot get value " ) ) ;
}
}
}
/*!
@ brief return the key of an object iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
typename object_t : : key_type key ( ) const
{
assert ( m_object ! = nullptr ) ;
if ( m_object - > is_object ( ) )
{
return m_it . object_iterator - > first ;
}
JSON_THROW ( invalid_iterator : : create ( 207 , " cannot use key() for non-object iterators " ) ) ;
}
/*!
@ brief return the value of an iterator
@ pre The iterator is initialized ; i . e . ` m_object ! = nullptr ` .
*/
reference value ( ) const
{
return operator * ( ) ;
}
private :
/// associated JSON instance
pointer m_object = nullptr ;
/// the actual iterator of the associated instance
internal_iterator m_it = internal_iterator ( ) ;
} ;
/*!
@ brief a template for a reverse iterator class
@ tparam Base the base iterator type to reverse . Valid types are @ ref
iterator ( to create @ ref reverse_iterator ) and @ ref const_iterator ( to
create @ ref const_reverse_iterator ) .
@ requirement The class satisfies the following concept requirements :
- [ RandomAccessIterator ] ( http : //en.cppreference.com/w/cpp/concept/RandomAccessIterator):
The iterator that can be moved to point ( forward and backward ) to any
element in constant time .
- [ OutputIterator ] ( http : //en.cppreference.com/w/cpp/concept/OutputIterator):
It is possible to write to the pointed - to element ( only if @ a Base is
@ ref iterator ) .
@ since version 1.0 .0
*/
template < typename Base >
class json_reverse_iterator : public std : : reverse_iterator < Base >
{
public :
/// shortcut to the reverse iterator adaptor
using base_iterator = std : : reverse_iterator < Base > ;
/// the reference type for the pointed-to element
using reference = typename Base : : reference ;
/// create reverse iterator from iterator
json_reverse_iterator ( const typename base_iterator : : iterator_type & it ) noexcept
: base_iterator ( it )
{ }
/// create reverse iterator from base class
json_reverse_iterator ( const base_iterator & it ) noexcept
: base_iterator ( it )
{ }
/// post-increment (it++)
json_reverse_iterator operator + + ( int )
{
return base_iterator : : operator + + ( 1 ) ;
}
/// pre-increment (++it)
json_reverse_iterator & operator + + ( )
{
base_iterator : : operator + + ( ) ;
return * this ;
}
/// post-decrement (it--)
json_reverse_iterator operator - - ( int )
{
return base_iterator : : operator - - ( 1 ) ;
}
/// pre-decrement (--it)
json_reverse_iterator & operator - - ( )
{
base_iterator : : operator - - ( ) ;
return * this ;
}
/// add to iterator
json_reverse_iterator & operator + = ( difference_type i )
{
base_iterator : : operator + = ( i ) ;
return * this ;
}
/// add to iterator
json_reverse_iterator operator + ( difference_type i ) const
{
auto result = * this ;
result + = i ;
return result ;
}
/// subtract from iterator
json_reverse_iterator operator - ( difference_type i ) const
{
auto result = * this ;
result - = i ;
return result ;
}
/// return difference
difference_type operator - ( const json_reverse_iterator & other ) const
{
return this - > base ( ) - other . base ( ) ;
}
/// access to successor
reference operator [ ] ( difference_type n ) const
{
return * ( this - > operator + ( n ) ) ;
}
/// return the key of an object iterator
typename object_t : : key_type key ( ) const
{
auto it = - - this - > base ( ) ;
return it . key ( ) ;
}
/// return the value of an iterator
reference value ( ) const
{
auto it = - - this - > base ( ) ;
return it . operator * ( ) ;
}
} ;
private :
////////////////////
// input adapters //
////////////////////
/// abstract input adapter interface
class input_adapter
{
public :
virtual int get_character ( ) = 0 ;
virtual std : : string read ( size_t offset , size_t length ) = 0 ;
virtual ~ input_adapter ( ) { }
// native support
/// input adapter for input stream
static std : : shared_ptr < input_adapter > create ( std : : istream & i , const size_t buffer_size = 16384 )
{
return std : : shared_ptr < input_adapter > ( new cached_input_stream_adapter ( i , buffer_size ) ) ;
}
/// input adapter for input stream
static std : : shared_ptr < input_adapter > create ( std : : istream & & i , const size_t buffer_size = 16384 )
{
return std : : shared_ptr < input_adapter > ( new cached_input_stream_adapter ( i , buffer_size ) ) ;
}
/// input adapter for buffer
static std : : shared_ptr < input_adapter > create ( const char * b , size_t l )
{
return std : : shared_ptr < input_adapter > ( new input_buffer_adapter ( b , l ) ) ;
}
// derived support
/// input adapter for string literal
template < typename CharT , typename std : : enable_if <
std : : is_pointer < CharT > : : value and
std : : is_integral < typename std : : remove_pointer < CharT > : : type > : : value and
sizeof ( typename std : : remove_pointer < CharT > : : type ) = = 1 , int > : : type = 0 >
static std : : shared_ptr < input_adapter > create ( CharT b )
{
return create ( reinterpret_cast < const char * > ( b ) ,
std : : strlen ( reinterpret_cast < const char * > ( b ) ) ) ;
}
/// input adapter for iterator range with contiguous storage
template < class IteratorType , typename std : : enable_if <
std : : is_same < typename std : : iterator_traits < IteratorType > : : iterator_category , std : : random_access_iterator_tag > : : value
, int > : : type
= 0 >
static std : : shared_ptr < input_adapter > create ( IteratorType first , IteratorType last )
{
// assertion to check that the iterator range is indeed contiguous,
// see http://stackoverflow.com/a/35008842/266378 for more discussion
assert ( std : : accumulate ( first , last , std : : pair < bool , int > ( true , 0 ) ,
[ & first ] ( std : : pair < bool , int > res , decltype ( * first ) val )
{
res . first & = ( val = = * ( std : : next ( std : : addressof ( * first ) , res . second + + ) ) ) ;
return res ;
} ) . first ) ;
// assertion to check that each element is 1 byte long
static_assert ( sizeof ( typename std : : iterator_traits < IteratorType > : : value_type ) = = 1 ,
" each element in the iterator range must have the size of 1 byte " ) ;
return create ( reinterpret_cast < const char * > ( & ( * first ) ) ,
static_cast < size_t > ( std : : distance ( first , last ) ) ) ;
}
/// input adapter for array
template < class T , std : : size_t N >
static std : : shared_ptr < input_adapter > create ( T ( & array ) [ N ] )
{
// delegate the call to the iterator-range overload
return create ( std : : begin ( array ) , std : : end ( array ) ) ;
}
/// input adapter for contiguous container
template < class ContiguousContainer , typename std : : enable_if <
not std : : is_pointer < ContiguousContainer > : : value and
std : : is_base_of <
std : : random_access_iterator_tag ,
typename std : : iterator_traits < decltype ( std : : begin ( std : : declval < ContiguousContainer const > ( ) ) ) > : : iterator_category > : : value
, int > : : type = 0 >
static std : : shared_ptr < input_adapter > create ( const ContiguousContainer & c )
{
// delegate the call to the iterator-range overload
return create ( std : : begin ( c ) , std : : end ( c ) ) ;
}
} ;
/// a type to simplify interfaces
using input_adapter_t = std : : shared_ptr < input_adapter > ;
/// input adapter for cached stream input
class cached_input_stream_adapter : public input_adapter
{
public :
cached_input_stream_adapter ( std : : istream & i , const size_t buffer_size )
: is ( i ) , start_position ( is . tellg ( ) ) , buffer ( buffer_size , ' \0 ' )
{
// immediately abort if stream is erroneous
if ( JSON_UNLIKELY ( i . fail ( ) ) )
{
JSON_THROW ( parse_error : : create ( 111 , 0 , " bad input stream " ) ) ;
}
// initial fill
is . read ( buffer . data ( ) , static_cast < std : : streamsize > ( buffer . size ( ) ) ) ;
// store number of bytes in the buffer
fill_size = static_cast < size_t > ( is . gcount ( ) ) ;
// skip byte order mark
if ( fill_size > = 3 and buffer [ 0 ] = = ' \xEF ' and buffer [ 1 ] = = ' \xBB ' and buffer [ 2 ] = = ' \xBF ' )
{
buffer_pos + = 3 ;
processed_chars + = 3 ;
}
}
~ cached_input_stream_adapter ( ) override
{
// clear stream flags
is . clear ( ) ;
// We initially read a lot of characters into the buffer, and we
// may not have processed all of them. Therefore, we need to
// "rewind" the stream after the last processed char.
is . seekg ( start_position + static_cast < std : : streamoff > ( processed_chars ) ) ;
// clear stream flags
is . clear ( ) ;
}
int get_character ( ) override
{
// check if refilling is necessary and possible
if ( buffer_pos = = fill_size and not eof )
{
// refill
is . read ( buffer . data ( ) , static_cast < std : : streamsize > ( buffer . size ( ) ) ) ;
// store number of bytes in the buffer
fill_size = static_cast < size_t > ( is . gcount ( ) ) ;
// the buffer is ready
buffer_pos = 0 ;
// remember that filling did not yield new input
if ( fill_size = = 0 )
{
eof = true ;
return std : : char_traits < char > : : eof ( ) ;
}
}
+ + processed_chars ;
return buffer [ buffer_pos + + ] & 0xFF ; ;
}
std : : string read ( size_t offset , size_t length ) override
{
// create buffer
std : : string result ( length , ' \0 ' ) ;
// save stream position
auto current_pos = is . tellg ( ) ;
// save stream flags
auto flags = is . rdstate ( ) ;
// clear stream flags
is . clear ( ) ;
// set stream position
is . seekg ( static_cast < std : : streamoff > ( offset ) ) ;
// read bytes
is . read ( & result [ 0 ] , static_cast < std : : streamsize > ( length ) ) ;
// reset stream position
is . seekg ( current_pos ) ;
// reset stream flags
is . setstate ( flags ) ;
return result ;
}
private :
/// the associated input stream
std : : istream & is ;
/// chars returned via get_character()
size_t processed_chars = 0 ;
/// chars processed in the current buffer
size_t buffer_pos = 0 ;
/// whether stream reached eof
bool eof = false ;
/// how many chars have been copied to the buffer by last (re)fill
size_t fill_size = 0 ;
/// position of the stream when we started
const std : : streampos start_position ;
/// internal buffer
std : : vector < char > buffer ;
} ;
/// input adapter for buffer input
class input_buffer_adapter : public input_adapter
{
public :
input_buffer_adapter ( const char * b , size_t l )
: input_adapter ( ) , cursor ( b ) , limit ( b + l ) , start ( b )
{
// skip byte order mark
if ( l > = 3 and b [ 0 ] = = ' \xEF ' and b [ 1 ] = = ' \xBB ' and b [ 2 ] = = ' \xBF ' )
{
cursor + = 3 ;
}
}
// delete because of pointer members
input_buffer_adapter ( const input_buffer_adapter & ) = delete ;
input_buffer_adapter & operator = ( input_buffer_adapter & ) = delete ;
int get_character ( ) override
{
if ( JSON_LIKELY ( cursor < limit ) )
{
return * ( cursor + + ) & 0xFF ;
}
else
{
return std : : char_traits < char > : : eof ( ) ;
}
}
std : : string read ( size_t offset , size_t length ) override
{
// avoid reading too many characters
const size_t max_length = static_cast < size_t > ( limit - start ) ;
return std : : string ( start + offset , std : : min ( length , max_length - offset ) ) ;
}
private :
/// pointer to the current character
const char * cursor ;
/// pointer past the last character
const char * limit ;
/// pointer to the first character
const char * start ;
} ;
//////////////////////////////////////////
// binary serialization/deserialization //
//////////////////////////////////////////
/// @name binary serialization/deserialization support
/// @{
private :
/*!
@ brief deserialization of CBOR and MessagePack values
*/
class binary_reader
{
public :
/*!
@ brief create a binary reader
@ param [ in ] adapter input adapter to read from
*/
explicit binary_reader ( input_adapter_t adapter )
: ia ( adapter ) , is_little_endian ( little_endianess ( ) )
{
assert ( ia ) ;
}
/*!
@ brief create a JSON value from CBOR input
@ param [ in ] get_char whether a new character should be retrieved from
the input ( true , default ) or whether the last
read character should be considered instead
@ return JSON value created from CBOR input
@ throw parse_error .110 if input ended unexpectedly
@ throw parse_error .112 if unsupported byte was read
*/
basic_json parse_cbor ( const bool get_char = true )
{
switch ( get_char ? get ( ) : current )
{
// EOF
case std : : char_traits < char > : : eof ( ) :
{
JSON_THROW ( parse_error : : create ( 110 , chars_read , " unexpected end of input " ) ) ;
}
// Integer 0x00..0x17 (0..23)
case 0x00 :
case 0x01 :
case 0x02 :
case 0x03 :
case 0x04 :
case 0x05 :
case 0x06 :
case 0x07 :
case 0x08 :
case 0x09 :
case 0x0a :
case 0x0b :
case 0x0c :
case 0x0d :
case 0x0e :
case 0x0f :
case 0x10 :
case 0x11 :
case 0x12 :
case 0x13 :
case 0x14 :
case 0x15 :
case 0x16 :
case 0x17 :
{
return static_cast < number_unsigned_t > ( current ) ;
}
case 0x18 : // Unsigned integer (one-byte uint8_t follows)
{
return get_number < uint8_t > ( ) ;
}
case 0x19 : // Unsigned integer (two-byte uint16_t follows)
{
return get_number < uint16_t > ( ) ;
}
case 0x1a : // Unsigned integer (four-byte uint32_t follows)
{
return get_number < uint32_t > ( ) ;
}
case 0x1b : // Unsigned integer (eight-byte uint64_t follows)
{
return get_number < uint64_t > ( ) ;
}
// Negative integer -1-0x00..-1-0x17 (-1..-24)
case 0x20 :
case 0x21 :
case 0x22 :
case 0x23 :
case 0x24 :
case 0x25 :
case 0x26 :
case 0x27 :
case 0x28 :
case 0x29 :
case 0x2a :
case 0x2b :
case 0x2c :
case 0x2d :
case 0x2e :
case 0x2f :
case 0x30 :
case 0x31 :
case 0x32 :
case 0x33 :
case 0x34 :
case 0x35 :
case 0x36 :
case 0x37 :
{
return static_cast < int8_t > ( 0x20 - 1 - current ) ;
}
case 0x38 : // Negative integer (one-byte uint8_t follows)
{
// must be uint8_t !
return static_cast < number_integer_t > ( - 1 ) - get_number < uint8_t > ( ) ;
}
case 0x39 : // Negative integer -1-n (two-byte uint16_t follows)
{
return static_cast < number_integer_t > ( - 1 ) - get_number < uint16_t > ( ) ;
}
case 0x3a : // Negative integer -1-n (four-byte uint32_t follows)
{
return static_cast < number_integer_t > ( - 1 ) - get_number < uint32_t > ( ) ;
}
case 0x3b : // Negative integer -1-n (eight-byte uint64_t follows)
{
return static_cast < number_integer_t > ( - 1 ) - static_cast < number_integer_t > ( get_number < uint64_t > ( ) ) ;
}
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60 :
case 0x61 :
case 0x62 :
case 0x63 :
case 0x64 :
case 0x65 :
case 0x66 :
case 0x67 :
case 0x68 :
case 0x69 :
case 0x6a :
case 0x6b :
case 0x6c :
case 0x6d :
case 0x6e :
case 0x6f :
case 0x70 :
case 0x71 :
case 0x72 :
case 0x73 :
case 0x74 :
case 0x75 :
case 0x76 :
case 0x77 :
case 0x78 : // UTF-8 string (one-byte uint8_t for n follows)
case 0x79 : // UTF-8 string (two-byte uint16_t for n follow)
case 0x7a : // UTF-8 string (four-byte uint32_t for n follow)
case 0x7b : // UTF-8 string (eight-byte uint64_t for n follow)
case 0x7f : // UTF-8 string (indefinite length)
{
return get_cbor_string ( ) ;
}
// array (0x00..0x17 data items follow)
case 0x80 :
case 0x81 :
case 0x82 :
case 0x83 :
case 0x84 :
case 0x85 :
case 0x86 :
case 0x87 :
case 0x88 :
case 0x89 :
case 0x8a :
case 0x8b :
case 0x8c :
case 0x8d :
case 0x8e :
case 0x8f :
case 0x90 :
case 0x91 :
case 0x92 :
case 0x93 :
case 0x94 :
case 0x95 :
case 0x96 :
case 0x97 :
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( current & 0x1f ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_cbor ( ) ) ;
}
return result ;
}
case 0x98 : // array (one-byte uint8_t for n follows)
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint8_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_cbor ( ) ) ;
}
return result ;
}
case 0x99 : // array (two-byte uint16_t for n follow)
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_cbor ( ) ) ;
}
return result ;
}
case 0x9a : // array (four-byte uint32_t for n follow)
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_cbor ( ) ) ;
}
return result ;
}
case 0x9b : // array (eight-byte uint64_t for n follow)
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint64_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_cbor ( ) ) ;
}
return result ;
}
case 0x9f : // array (indefinite length)
{
basic_json result = value_t : : array ;
while ( get ( ) ! = 0xff )
{
result . push_back ( parse_cbor ( false ) ) ;
}
return result ;
}
// map (0x00..0x17 pairs of data items follow)
case 0xa0 :
case 0xa1 :
case 0xa2 :
case 0xa3 :
case 0xa4 :
case 0xa5 :
case 0xa6 :
case 0xa7 :
case 0xa8 :
case 0xa9 :
case 0xaa :
case 0xab :
case 0xac :
case 0xad :
case 0xae :
case 0xaf :
case 0xb0 :
case 0xb1 :
case 0xb2 :
case 0xb3 :
case 0xb4 :
case 0xb5 :
case 0xb6 :
case 0xb7 :
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( current & 0x1f ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xb8 : // map (one-byte uint8_t for n follows)
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint8_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xb9 : // map (two-byte uint16_t for n follow)
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xba : // map (four-byte uint32_t for n follow)
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xbb : // map (eight-byte uint64_t for n follow)
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint64_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xbf : // map (indefinite length)
{
basic_json result = value_t : : object ;
while ( get ( ) ! = 0xff )
{
auto key = get_cbor_string ( ) ;
result [ key ] = parse_cbor ( ) ;
}
return result ;
}
case 0xf4 : // false
{
return false ;
}
case 0xf5 : // true
{
return true ;
}
case 0xf6 : // null
{
return value_t : : null ;
}
case 0xf9 : // Half-Precision Float (two-byte IEEE 754)
{
const int byte1 = get ( ) ;
check_eof ( ) ;
const int byte2 = get ( ) ;
check_eof ( ) ;
// code from RFC 7049, Appendix D, Figure 3:
// As half-precision floating-point numbers were only added
// to IEEE 754 in 2008, today's programming platforms often
// still only have limited support for them. It is very
// easy to include at least decoding support for them even
// without such support. An example of a small decoder for
// half-precision floating-point numbers in the C language
// is shown in Fig. 3.
const int half = ( byte1 < < 8 ) + byte2 ;
const int exp = ( half > > 10 ) & 0x1f ;
const int mant = half & 0x3ff ;
double val ;
if ( exp = = 0 )
{
val = std : : ldexp ( mant , - 24 ) ;
}
else if ( exp ! = 31 )
{
val = std : : ldexp ( mant + 1024 , exp - 25 ) ;
}
else
{
val = mant = = 0
? std : : numeric_limits < double > : : infinity ( )
: std : : numeric_limits < double > : : quiet_NaN ( ) ;
}
return ( half & 0x8000 ) ! = 0 ? - val : val ;
}
case 0xfa : // Single-Precision Float (four-byte IEEE 754)
{
return get_number < float > ( ) ;
}
case 0xfb : // Double-Precision Float (eight-byte IEEE 754)
{
return get_number < double > ( ) ;
}
default : // anything else (0xFF is handled inside the other types)
{
std : : stringstream ss ;
ss < < std : : setw ( 2 ) < < std : : setfill ( ' 0 ' ) < < std : : hex < < current ;
JSON_THROW ( parse_error : : create ( 112 , chars_read , " error reading CBOR; last byte: 0x " + ss . str ( ) ) ) ;
}
}
}
/*!
@ brief create a JSON value from MessagePack input
@ return JSON value created from MessagePack input
@ throw parse_error .110 if input ended unexpectedly
@ throw parse_error .112 if unsupported byte was read
*/
basic_json parse_msgpack ( )
{
switch ( get ( ) )
{
// EOF
case std : : char_traits < char > : : eof ( ) :
{
JSON_THROW ( parse_error : : create ( 110 , chars_read , " unexpected end of input " ) ) ;
}
// positive fixint
case 0x00 :
case 0x01 :
case 0x02 :
case 0x03 :
case 0x04 :
case 0x05 :
case 0x06 :
case 0x07 :
case 0x08 :
case 0x09 :
case 0x0a :
case 0x0b :
case 0x0c :
case 0x0d :
case 0x0e :
case 0x0f :
case 0x10 :
case 0x11 :
case 0x12 :
case 0x13 :
case 0x14 :
case 0x15 :
case 0x16 :
case 0x17 :
case 0x18 :
case 0x19 :
case 0x1a :
case 0x1b :
case 0x1c :
case 0x1d :
case 0x1e :
case 0x1f :
case 0x20 :
case 0x21 :
case 0x22 :
case 0x23 :
case 0x24 :
case 0x25 :
case 0x26 :
case 0x27 :
case 0x28 :
case 0x29 :
case 0x2a :
case 0x2b :
case 0x2c :
case 0x2d :
case 0x2e :
case 0x2f :
case 0x30 :
case 0x31 :
case 0x32 :
case 0x33 :
case 0x34 :
case 0x35 :
case 0x36 :
case 0x37 :
case 0x38 :
case 0x39 :
case 0x3a :
case 0x3b :
case 0x3c :
case 0x3d :
case 0x3e :
case 0x3f :
case 0x40 :
case 0x41 :
case 0x42 :
case 0x43 :
case 0x44 :
case 0x45 :
case 0x46 :
case 0x47 :
case 0x48 :
case 0x49 :
case 0x4a :
case 0x4b :
case 0x4c :
case 0x4d :
case 0x4e :
case 0x4f :
case 0x50 :
case 0x51 :
case 0x52 :
case 0x53 :
case 0x54 :
case 0x55 :
case 0x56 :
case 0x57 :
case 0x58 :
case 0x59 :
case 0x5a :
case 0x5b :
case 0x5c :
case 0x5d :
case 0x5e :
case 0x5f :
case 0x60 :
case 0x61 :
case 0x62 :
case 0x63 :
case 0x64 :
case 0x65 :
case 0x66 :
case 0x67 :
case 0x68 :
case 0x69 :
case 0x6a :
case 0x6b :
case 0x6c :
case 0x6d :
case 0x6e :
case 0x6f :
case 0x70 :
case 0x71 :
case 0x72 :
case 0x73 :
case 0x74 :
case 0x75 :
case 0x76 :
case 0x77 :
case 0x78 :
case 0x79 :
case 0x7a :
case 0x7b :
case 0x7c :
case 0x7d :
case 0x7e :
case 0x7f :
{
return static_cast < number_unsigned_t > ( current ) ;
}
// fixmap
case 0x80 :
case 0x81 :
case 0x82 :
case 0x83 :
case 0x84 :
case 0x85 :
case 0x86 :
case 0x87 :
case 0x88 :
case 0x89 :
case 0x8a :
case 0x8b :
case 0x8c :
case 0x8d :
case 0x8e :
case 0x8f :
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( current & 0x0f ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_msgpack_string ( ) ;
result [ key ] = parse_msgpack ( ) ;
}
return result ;
}
// fixarray
case 0x90 :
case 0x91 :
case 0x92 :
case 0x93 :
case 0x94 :
case 0x95 :
case 0x96 :
case 0x97 :
case 0x98 :
case 0x99 :
case 0x9a :
case 0x9b :
case 0x9c :
case 0x9d :
case 0x9e :
case 0x9f :
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( current & 0x0f ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_msgpack ( ) ) ;
}
return result ;
}
// fixstr
case 0xa0 :
case 0xa1 :
case 0xa2 :
case 0xa3 :
case 0xa4 :
case 0xa5 :
case 0xa6 :
case 0xa7 :
case 0xa8 :
case 0xa9 :
case 0xaa :
case 0xab :
case 0xac :
case 0xad :
case 0xae :
case 0xaf :
case 0xb0 :
case 0xb1 :
case 0xb2 :
case 0xb3 :
case 0xb4 :
case 0xb5 :
case 0xb6 :
case 0xb7 :
case 0xb8 :
case 0xb9 :
case 0xba :
case 0xbb :
case 0xbc :
case 0xbd :
case 0xbe :
case 0xbf :
{
return get_msgpack_string ( ) ;
}
case 0xc0 : // nil
{
return value_t : : null ;
}
case 0xc2 : // false
{
return false ;
}
case 0xc3 : // true
{
return true ;
}
case 0xca : // float 32
{
return get_number < float > ( ) ;
}
case 0xcb : // float 64
{
return get_number < double > ( ) ;
}
case 0xcc : // uint 8
{
return get_number < uint8_t > ( ) ;
}
case 0xcd : // uint 16
{
return get_number < uint16_t > ( ) ;
}
case 0xce : // uint 32
{
return get_number < uint32_t > ( ) ;
}
case 0xcf : // uint 64
{
return get_number < uint64_t > ( ) ;
}
case 0xd0 : // int 8
{
return get_number < int8_t > ( ) ;
}
case 0xd1 : // int 16
{
return get_number < int16_t > ( ) ;
}
case 0xd2 : // int 32
{
return get_number < int32_t > ( ) ;
}
case 0xd3 : // int 64
{
return get_number < int64_t > ( ) ;
}
case 0xd9 : // str 8
case 0xda : // str 16
case 0xdb : // str 32
{
return get_msgpack_string ( ) ;
}
case 0xdc : // array 16
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_msgpack ( ) ) ;
}
return result ;
}
case 0xdd : // array 32
{
basic_json result = value_t : : array ;
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
result . push_back ( parse_msgpack ( ) ) ;
}
return result ;
}
case 0xde : // map 16
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_msgpack_string ( ) ;
result [ key ] = parse_msgpack ( ) ;
}
return result ;
}
case 0xdf : // map 32
{
basic_json result = value_t : : object ;
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
auto key = get_msgpack_string ( ) ;
result [ key ] = parse_msgpack ( ) ;
}
return result ;
}
// positive fixint
case 0xe0 :
case 0xe1 :
case 0xe2 :
case 0xe3 :
case 0xe4 :
case 0xe5 :
case 0xe6 :
case 0xe7 :
case 0xe8 :
case 0xe9 :
case 0xea :
case 0xeb :
case 0xec :
case 0xed :
case 0xee :
case 0xef :
case 0xf0 :
case 0xf1 :
case 0xf2 :
case 0xf3 :
case 0xf4 :
case 0xf5 :
case 0xf6 :
case 0xf7 :
case 0xf8 :
case 0xf9 :
case 0xfa :
case 0xfb :
case 0xfc :
case 0xfd :
case 0xfe :
case 0xff :
{
return static_cast < int8_t > ( current ) ;
}
default : // anything else
{
std : : stringstream ss ;
ss < < std : : setw ( 2 ) < < std : : setfill ( ' 0 ' ) < < std : : hex < < current ;
JSON_THROW ( parse_error : : create ( 112 , chars_read , " error reading MessagePack; last byte: 0x " + ss . str ( ) ) ) ;
}
}
}
/*!
@ brief determine system byte order
@ return true iff system ' s byte order is little endian
@ note from http : //stackoverflow.com/a/1001328/266378
*/
static bool little_endianess ( ) noexcept
{
int num = 1 ;
return ( * reinterpret_cast < char * > ( & num ) = = 1 ) ;
}
private :
/*!
@ brief get next character from the input
This function provides the interface to the used input adapter . It does
not throw in case the input reached EOF , but returns
` std : : char_traits < char > : : eof ( ) ` in that case .
@ return character read from the input
*/
int get ( )
{
+ + chars_read ;
return ( current = ia - > get_character ( ) ) ;
}
/*
@ brief read a number from the input
@ tparam T the type of the number
@ return number of type @ a T
@ note This function needs to respect the system ' s endianess , because
bytes in CBOR and MessagePack are stored in network order ( big
endian ) and therefore need reordering on little endian systems .
@ throw parse_error .110 if input has less than ` sizeof ( T ) ` bytes
*/
template < typename T >
T get_number ( )
{
// step 1: read input into array with system's byte order
std : : array < uint8_t , sizeof ( T ) > vec ;
for ( size_t i = 0 ; i < sizeof ( T ) ; + + i )
{
get ( ) ;
check_eof ( ) ;
// reverse byte order prior to conversion if necessary
if ( is_little_endian )
{
vec [ sizeof ( T ) - i - 1 ] = static_cast < uint8_t > ( current ) ;
}
else
{
vec [ i ] = static_cast < uint8_t > ( current ) ;
}
}
// step 2: convert array into number of type T and return
T result ;
std : : memcpy ( & result , vec . data ( ) , sizeof ( T ) ) ;
return result ;
}
/*!
@ brief create a string by reading characters from the input
@ param [ in ] len number of bytes to read
@ return string created by reading @ a len bytes
@ throw parse_error .110 if input has less than @ a len bytes
*/
std : : string get_string ( const size_t len )
{
std : : string result ;
for ( size_t i = 0 ; i < len ; + + i )
{
get ( ) ;
check_eof ( ) ;
result . append ( 1 , static_cast < char > ( current ) ) ;
}
return result ;
}
/*!
@ brief reads a CBOR string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string .
Additionally , CBOR ' s strings with indefinite lengths are supported .
@ return string
@ throw parse_error .110 if input ended
@ throw parse_error .113 if an unexpexted byte is read
*/
std : : string get_cbor_string ( )
{
check_eof ( ) ;
switch ( current )
{
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60 :
case 0x61 :
case 0x62 :
case 0x63 :
case 0x64 :
case 0x65 :
case 0x66 :
case 0x67 :
case 0x68 :
case 0x69 :
case 0x6a :
case 0x6b :
case 0x6c :
case 0x6d :
case 0x6e :
case 0x6f :
case 0x70 :
case 0x71 :
case 0x72 :
case 0x73 :
case 0x74 :
case 0x75 :
case 0x76 :
case 0x77 :
{
const auto len = static_cast < size_t > ( current & 0x1f ) ;
return get_string ( len ) ;
}
case 0x78 : // UTF-8 string (one-byte uint8_t for n follows)
{
const auto len = static_cast < size_t > ( get_number < uint8_t > ( ) ) ;
return get_string ( len ) ;
}
case 0x79 : // UTF-8 string (two-byte uint16_t for n follow)
{
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
return get_string ( len ) ;
}
case 0x7a : // UTF-8 string (four-byte uint32_t for n follow)
{
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
return get_string ( len ) ;
}
case 0x7b : // UTF-8 string (eight-byte uint64_t for n follow)
{
const auto len = static_cast < size_t > ( get_number < uint64_t > ( ) ) ;
return get_string ( len ) ;
}
case 0x7f : // UTF-8 string (indefinite length)
{
std : : string result ;
while ( get ( ) ! = 0xff )
{
check_eof ( ) ;
result . append ( 1 , static_cast < char > ( current ) ) ;
}
return result ;
}
default :
{
std : : stringstream ss ;
ss < < std : : setw ( 2 ) < < std : : setfill ( ' 0 ' ) < < std : : hex < < current ;
JSON_THROW ( parse_error : : create ( 113 , chars_read , " expected a CBOR string; last byte: 0x " + ss . str ( ) ) ) ;
}
}
}
/*!
@ brief reads a MessagePack string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string .
@ return string
@ throw parse_error .110 if input ended
@ throw parse_error .113 if an unexpexted byte is read
*/
std : : string get_msgpack_string ( )
{
check_eof ( ) ;
switch ( current )
{
// fixstr
case 0xa0 :
case 0xa1 :
case 0xa2 :
case 0xa3 :
case 0xa4 :
case 0xa5 :
case 0xa6 :
case 0xa7 :
case 0xa8 :
case 0xa9 :
case 0xaa :
case 0xab :
case 0xac :
case 0xad :
case 0xae :
case 0xaf :
case 0xb0 :
case 0xb1 :
case 0xb2 :
case 0xb3 :
case 0xb4 :
case 0xb5 :
case 0xb6 :
case 0xb7 :
case 0xb8 :
case 0xb9 :
case 0xba :
case 0xbb :
case 0xbc :
case 0xbd :
case 0xbe :
case 0xbf :
{
const auto len = static_cast < size_t > ( current & 0x1f ) ;
return get_string ( len ) ;
}
case 0xd9 : // str 8
{
const auto len = static_cast < size_t > ( get_number < uint8_t > ( ) ) ;
return get_string ( len ) ;
}
case 0xda : // str 16
{
const auto len = static_cast < size_t > ( get_number < uint16_t > ( ) ) ;
return get_string ( len ) ;
}
case 0xdb : // str 32
{
const auto len = static_cast < size_t > ( get_number < uint32_t > ( ) ) ;
return get_string ( len ) ;
}
default :
{
std : : stringstream ss ;
ss < < std : : setw ( 2 ) < < std : : setfill ( ' 0 ' ) < < std : : hex < < current ;
JSON_THROW ( parse_error : : create ( 113 , chars_read , " expected a MessagePack string; last byte: 0x " + ss . str ( ) ) ) ;
}
}
}
/*!
@ brief check if input ended
@ throw parse_error .110 if input ended
*/
void check_eof ( ) const
{
if ( JSON_UNLIKELY ( current = = std : : char_traits < char > : : eof ( ) ) )
{
JSON_THROW ( parse_error : : create ( 110 , chars_read , " unexpected end of input " ) ) ;
}
}
private :
/// input adapter
input_adapter_t ia = nullptr ;
/// the current character
int current = std : : char_traits < char > : : eof ( ) ;
/// the number of characters read
size_t chars_read = 0 ;
/// whether we can assume little endianess
const bool is_little_endian = true ;
} ;
/*!
@ brief serialization to CBOR and MessagePack values
*/
class binary_writer
{
public :
/*!
@ brief create a binary writer
@ param [ in ] adapter output adapter to write to
*/
explicit binary_writer ( output_adapter_t < uint8_t > adapter )
: is_little_endian ( binary_reader : : little_endianess ( ) ) , oa ( adapter )
{
assert ( oa ) ;
}
/*!
@ brief [ in ] j JSON value to serialize
*/
void write_cbor ( const basic_json & j )
{
switch ( j . type ( ) )
{
case value_t : : null :
{
oa - > write_character ( 0xf6 ) ;
break ;
}
case value_t : : boolean :
{
oa - > write_character ( j . m_value . boolean ? 0xf5 : 0xf4 ) ;
break ;
}
case value_t : : number_integer :
{
if ( j . m_value . number_integer > = 0 )
{
// CBOR does not differentiate between positive signed
// integers and unsigned integers. Therefore, we used the
// code from the value_t::number_unsigned case here.
if ( j . m_value . number_integer < = 0x17 )
{
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer < = ( std : : numeric_limits < uint8_t > : : max ) ( ) )
{
oa - > write_character ( 0x18 ) ;
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer < = ( std : : numeric_limits < uint16_t > : : max ) ( ) )
{
oa - > write_character ( 0x19 ) ;
write_number ( static_cast < uint16_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer < = ( std : : numeric_limits < uint32_t > : : max ) ( ) )
{
oa - > write_character ( 0x1a ) ;
write_number ( static_cast < uint32_t > ( j . m_value . number_integer ) ) ;
}
else
{
oa - > write_character ( 0x1b ) ;
write_number ( static_cast < uint64_t > ( j . m_value . number_integer ) ) ;
}
}
else
{
// The conversions below encode the sign in the first
// byte, and the value is converted to a positive number.
const auto positive_number = - 1 - j . m_value . number_integer ;
if ( j . m_value . number_integer > = - 24 )
{
write_number ( static_cast < uint8_t > ( 0x20 + positive_number ) ) ;
}
else if ( positive_number < = ( std : : numeric_limits < uint8_t > : : max ) ( ) )
{
oa - > write_character ( 0x38 ) ;
write_number ( static_cast < uint8_t > ( positive_number ) ) ;
}
else if ( positive_number < = ( std : : numeric_limits < uint16_t > : : max ) ( ) )
{
oa - > write_character ( 0x39 ) ;
write_number ( static_cast < uint16_t > ( positive_number ) ) ;
}
else if ( positive_number < = ( std : : numeric_limits < uint32_t > : : max ) ( ) )
{
oa - > write_character ( 0x3a ) ;
write_number ( static_cast < uint32_t > ( positive_number ) ) ;
}
else
{
oa - > write_character ( 0x3b ) ;
write_number ( static_cast < uint64_t > ( positive_number ) ) ;
}
}
break ;
}
case value_t : : number_unsigned :
{
if ( j . m_value . number_unsigned < = 0x17 )
{
write_number ( static_cast < uint8_t > ( j . m_value . number_unsigned ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint8_t > : : max ) ( ) )
{
oa - > write_character ( 0x18 ) ;
write_number ( static_cast < uint8_t > ( j . m_value . number_unsigned ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint16_t > : : max ) ( ) )
{
oa - > write_character ( 0x19 ) ;
write_number ( static_cast < uint16_t > ( j . m_value . number_unsigned ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint32_t > : : max ) ( ) )
{
oa - > write_character ( 0x1a ) ;
write_number ( static_cast < uint32_t > ( j . m_value . number_unsigned ) ) ;
}
else
{
oa - > write_character ( 0x1b ) ;
write_number ( static_cast < uint64_t > ( j . m_value . number_unsigned ) ) ;
}
break ;
}
case value_t : : number_float :
{
// Double-Precision Float
oa - > write_character ( 0xfb ) ;
write_number ( j . m_value . number_float ) ;
break ;
}
case value_t : : string :
{
// step 1: write control byte and the string length
const auto N = j . m_value . string - > size ( ) ;
if ( N < = 0x17 )
{
write_number ( static_cast < uint8_t > ( 0x60 + N ) ) ;
}
else if ( N < = 0xff )
{
oa - > write_character ( 0x78 ) ;
write_number ( static_cast < uint8_t > ( N ) ) ;
}
else if ( N < = 0xffff )
{
oa - > write_character ( 0x79 ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 0xffffffff )
{
oa - > write_character ( 0x7a ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// LCOV_EXCL_START
else if ( N < = 0xffffffffffffffff )
{
oa - > write_character ( 0x7b ) ;
write_number ( static_cast < uint64_t > ( N ) ) ;
}
// LCOV_EXCL_STOP
// step 2: write the string
oa - > write_characters ( reinterpret_cast < const uint8_t * > ( j . m_value . string - > c_str ( ) ) ,
j . m_value . string - > size ( ) ) ;
break ;
}
case value_t : : array :
{
// step 1: write control byte and the array size
const auto N = j . m_value . array - > size ( ) ;
if ( N < = 0x17 )
{
write_number ( static_cast < uint8_t > ( 0x80 + N ) ) ;
}
else if ( N < = 0xff )
{
oa - > write_character ( 0x98 ) ;
write_number ( static_cast < uint8_t > ( N ) ) ;
}
else if ( N < = 0xffff )
{
oa - > write_character ( 0x99 ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 0xffffffff )
{
oa - > write_character ( 0x9a ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// LCOV_EXCL_START
else if ( N < = 0xffffffffffffffff )
{
oa - > write_character ( 0x9b ) ;
write_number ( static_cast < uint64_t > ( N ) ) ;
}
// LCOV_EXCL_STOP
// step 2: write each element
for ( const auto & el : * j . m_value . array )
{
write_cbor ( el ) ;
}
break ;
}
case value_t : : object :
{
// step 1: write control byte and the object size
const auto N = j . m_value . object - > size ( ) ;
if ( N < = 0x17 )
{
write_number ( static_cast < uint8_t > ( 0xa0 + N ) ) ;
}
else if ( N < = 0xff )
{
oa - > write_character ( 0xb8 ) ;
write_number ( static_cast < uint8_t > ( N ) ) ;
}
else if ( N < = 0xffff )
{
oa - > write_character ( 0xb9 ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 0xffffffff )
{
oa - > write_character ( 0xba ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// LCOV_EXCL_START
else if ( N < = 0xffffffffffffffff )
{
oa - > write_character ( 0xbb ) ;
write_number ( static_cast < uint64_t > ( N ) ) ;
}
// LCOV_EXCL_STOP
// step 2: write each element
for ( const auto & el : * j . m_value . object )
{
write_cbor ( el . first ) ;
write_cbor ( el . second ) ;
}
break ;
}
default :
{
break ;
}
}
}
/*!
@ brief [ in ] j JSON value to serialize
*/
void write_msgpack ( const basic_json & j )
{
switch ( j . type ( ) )
{
case value_t : : null :
{
// nil
oa - > write_character ( 0xc0 ) ;
break ;
}
case value_t : : boolean :
{
// true and false
oa - > write_character ( j . m_value . boolean ? 0xc3 : 0xc2 ) ;
break ;
}
case value_t : : number_integer :
{
if ( j . m_value . number_integer > = 0 )
{
// MessagePack does not differentiate between positive
// signed integers and unsigned integers. Therefore, we
// used the code from the value_t::number_unsigned case
// here.
if ( j . m_value . number_unsigned < 128 )
{
// positive fixnum
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint8_t > : : max ) ( ) )
{
// uint 8
oa - > write_character ( 0xcc ) ;
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint16_t > : : max ) ( ) )
{
// uint 16
oa - > write_character ( 0xcd ) ;
write_number ( static_cast < uint16_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint32_t > : : max ) ( ) )
{
// uint 32
oa - > write_character ( 0xce ) ;
write_number ( static_cast < uint32_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint64_t > : : max ) ( ) )
{
// uint 64
oa - > write_character ( 0xcf ) ;
write_number ( static_cast < uint64_t > ( j . m_value . number_integer ) ) ;
}
}
else
{
if ( j . m_value . number_integer > = - 32 )
{
// negative fixnum
write_number ( static_cast < int8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer > = ( std : : numeric_limits < int8_t > : : min ) ( ) and j . m_value . number_integer < = ( std : : numeric_limits < int8_t > : : max ) ( ) )
{
// int 8
oa - > write_character ( 0xd0 ) ;
write_number ( static_cast < int8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer > = ( std : : numeric_limits < int16_t > : : min ) ( ) and j . m_value . number_integer < = ( std : : numeric_limits < int16_t > : : max ) ( ) )
{
// int 16
oa - > write_character ( 0xd1 ) ;
write_number ( static_cast < int16_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer > = ( std : : numeric_limits < int32_t > : : min ) ( ) and j . m_value . number_integer < = ( std : : numeric_limits < int32_t > : : max ) ( ) )
{
// int 32
oa - > write_character ( 0xd2 ) ;
write_number ( static_cast < int32_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_integer > = ( std : : numeric_limits < int64_t > : : min ) ( ) and j . m_value . number_integer < = ( std : : numeric_limits < int64_t > : : max ) ( ) )
{
// int 64
oa - > write_character ( 0xd3 ) ;
write_number ( static_cast < int64_t > ( j . m_value . number_integer ) ) ;
}
}
break ;
}
case value_t : : number_unsigned :
{
if ( j . m_value . number_unsigned < 128 )
{
// positive fixnum
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint8_t > : : max ) ( ) )
{
// uint 8
oa - > write_character ( 0xcc ) ;
write_number ( static_cast < uint8_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint16_t > : : max ) ( ) )
{
// uint 16
oa - > write_character ( 0xcd ) ;
write_number ( static_cast < uint16_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint32_t > : : max ) ( ) )
{
// uint 32
oa - > write_character ( 0xce ) ;
write_number ( static_cast < uint32_t > ( j . m_value . number_integer ) ) ;
}
else if ( j . m_value . number_unsigned < = ( std : : numeric_limits < uint64_t > : : max ) ( ) )
{
// uint 64
oa - > write_character ( 0xcf ) ;
write_number ( static_cast < uint64_t > ( j . m_value . number_integer ) ) ;
}
break ;
}
case value_t : : number_float :
{
// float 64
oa - > write_character ( 0xcb ) ;
write_number ( j . m_value . number_float ) ;
break ;
}
case value_t : : string :
{
// step 1: write control byte and the string length
const auto N = j . m_value . string - > size ( ) ;
if ( N < = 31 )
{
// fixstr
write_number ( static_cast < uint8_t > ( 0xa0 | N ) ) ;
}
else if ( N < = 255 )
{
// str 8
oa - > write_character ( 0xd9 ) ;
write_number ( static_cast < uint8_t > ( N ) ) ;
}
else if ( N < = 65535 )
{
// str 16
oa - > write_character ( 0xda ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 4294967295 )
{
// str 32
oa - > write_character ( 0xdb ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// step 2: write the string
oa - > write_characters ( reinterpret_cast < const uint8_t * > ( j . m_value . string - > c_str ( ) ) ,
j . m_value . string - > size ( ) ) ;
break ;
}
case value_t : : array :
{
// step 1: write control byte and the array size
const auto N = j . m_value . array - > size ( ) ;
if ( N < = 15 )
{
// fixarray
write_number ( static_cast < uint8_t > ( 0x90 | N ) ) ;
}
else if ( N < = 0xffff )
{
// array 16
oa - > write_character ( 0xdc ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 0xffffffff )
{
// array 32
oa - > write_character ( 0xdd ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// step 2: write each element
for ( const auto & el : * j . m_value . array )
{
write_msgpack ( el ) ;
}
break ;
}
case value_t : : object :
{
// step 1: write control byte and the object size
const auto N = j . m_value . object - > size ( ) ;
if ( N < = 15 )
{
// fixmap
write_number ( static_cast < uint8_t > ( 0x80 | ( N & 0xf ) ) ) ;
}
else if ( N < = 65535 )
{
// map 16
oa - > write_character ( 0xde ) ;
write_number ( static_cast < uint16_t > ( N ) ) ;
}
else if ( N < = 4294967295 )
{
// map 32
oa - > write_character ( 0xdf ) ;
write_number ( static_cast < uint32_t > ( N ) ) ;
}
// step 2: write each element
for ( const auto & el : * j . m_value . object )
{
write_msgpack ( el . first ) ;
write_msgpack ( el . second ) ;
}
break ;
}
default :
{
break ;
}
}
}
private :
/*
@ brief write a number to output input
@ param [ in ] n number of type @ a T
@ tparam T the type of the number
@ note This function needs to respect the system ' s endianess , because
bytes in CBOR and MessagePack are stored in network order ( big
endian ) and therefore need reordering on little endian systems .
*/
template < typename T >
void write_number ( T n )
{
// step 1: write number to array of length T
std : : array < uint8_t , sizeof ( T ) > vec ;
std : : memcpy ( vec . data ( ) , & n , sizeof ( T ) ) ;
// step 2: write array to output (with possible reordering)
for ( size_t i = 0 ; i < sizeof ( T ) ; + + i )
{
// reverse byte order prior to conversion if necessary
if ( is_little_endian )
{
oa - > write_character ( vec [ sizeof ( T ) - i - 1 ] ) ;
}
else
{
oa - > write_character ( vec [ i ] ) ;
}
}
}
private :
/// whether we can assume little endianess
const bool is_little_endian = true ;
/// the output
output_adapter_t < uint8_t > oa = nullptr ;
} ;
public :
/*!
@ brief create a CBOR serialization of a given JSON value
Serializes a given JSON value @ a j to a byte vector using the CBOR ( Concise
Binary Object Representation ) serialization format . CBOR is a binary
serialization format which aims to be more compact than JSON itself , yet
more efficient to parse .
The library uses the following mapping from JSON values types to
CBOR types according to the CBOR specification ( RFC 7049 ) :
JSON value type | value / range | CBOR type | first byte
- - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - -
null | ` null ` | Null | 0xf6
boolean | ` true ` | True | 0xf5
boolean | ` false ` | False | 0xf4
number_integer | - 9223372036854775808. . - 2147483649 | Negative integer ( 8 bytes follow ) | 0x3b
number_integer | - 2147483648. . - 32769 | Negative integer ( 4 bytes follow ) | 0x3a
number_integer | - 32768. . - 129 | Negative integer ( 2 bytes follow ) | 0x39
number_integer | - 128. . - 25 | Negative integer ( 1 byte follow ) | 0x38
number_integer | - 24. . - 1 | Negative integer | 0x20 . .0 x37
number_integer | 0. .23 | Integer | 0x00 . .0 x17
number_integer | 24. .255 | Unsigned integer ( 1 byte follow ) | 0x18
number_integer | 256. .65535 | Unsigned integer ( 2 bytes follow ) | 0x19
number_integer | 65536. .4294967295 | Unsigned integer ( 4 bytes follow ) | 0x1a
number_integer | 4294967296. .18446744073709551615 | Unsigned integer ( 8 bytes follow ) | 0x1b
number_unsigned | 0. .23 | Integer | 0x00 . .0 x17
number_unsigned | 24. .255 | Unsigned integer ( 1 byte follow ) | 0x18
number_unsigned | 256. .65535 | Unsigned integer ( 2 bytes follow ) | 0x19
number_unsigned | 65536. .4294967295 | Unsigned integer ( 4 bytes follow ) | 0x1a
number_unsigned | 4294967296. .18446744073709551615 | Unsigned integer ( 8 bytes follow ) | 0x1b
number_float | * any value * | Double - Precision Float | 0xfb
string | * length * : 0. .23 | UTF - 8 string | 0x60 . .0 x77
string | * length * : 23. .255 | UTF - 8 string ( 1 byte follow ) | 0x78
string | * length * : 256. .65535 | UTF - 8 string ( 2 bytes follow ) | 0x79
string | * length * : 65536. .4294967295 | UTF - 8 string ( 4 bytes follow ) | 0x7a
string | * length * : 4294967296. .18446744073709551615 | UTF - 8 string ( 8 bytes follow ) | 0x7b
array | * size * : 0. .23 | array | 0x80 . .0 x97
array | * size * : 23. .255 | array ( 1 byte follow ) | 0x98
array | * size * : 256. .65535 | array ( 2 bytes follow ) | 0x99
array | * size * : 65536. .4294967295 | array ( 4 bytes follow ) | 0x9a
array | * size * : 4294967296. .18446744073709551615 | array ( 8 bytes follow ) | 0x9b
object | * size * : 0. .23 | map | 0xa0 . .0 xb7
object | * size * : 23. .255 | map ( 1 byte follow ) | 0xb8
object | * size * : 256. .65535 | map ( 2 bytes follow ) | 0xb9
object | * size * : 65536. .4294967295 | map ( 4 bytes follow ) | 0xba
object | * size * : 4294967296. .18446744073709551615 | map ( 8 bytes follow ) | 0xbb
@ note The mapping is * * complete * * in the sense that any JSON value type
can be converted to a CBOR value .
@ note The following CBOR types are not used in the conversion :
- byte strings ( 0x40 . .0 x5f )
- UTF - 8 strings terminated by " break " ( 0x7f )
- arrays terminated by " break " ( 0x9f )
- maps terminated by " break " ( 0xbf )
- date / time ( 0xc0 . .0 xc1 )
- bignum ( 0xc2 . .0 xc3 )
- decimal fraction ( 0xc4 )
- bigfloat ( 0xc5 )
- tagged items ( 0xc6 . .0 xd4 , 0xd8 . .0 xdb )
- expected conversions ( 0xd5 . .0 xd7 )
- simple values ( 0xe0 . .0 xf3 , 0xf8 )
- undefined ( 0xf7 )
- half and single - precision floats ( 0xf9 - 0xfa )
- break ( 0xff )
@ param [ in ] j JSON value to serialize
@ return MessagePack serialization as byte vector
@ complexity Linear in the size of the JSON value @ a j .
@ liveexample { The example shows the serialization of a JSON value to a byte
vector in CBOR format . , to_cbor }
@ sa http : //cbor.io
@ sa @ ref from_cbor ( const std : : vector < uint8_t > & , const size_t ) for the
analogous deserialization
@ sa @ ref to_msgpack ( const basic_json & for the related MessagePack format
@ since version 2.0 .9
*/
static std : : vector < uint8_t > to_cbor ( const basic_json & j )
{
std : : vector < uint8_t > result ;
binary_writer bw ( output_adapter < uint8_t > : : create ( result ) ) ;
bw . write_cbor ( j ) ;
return result ;
}
/*!
@ brief create a MessagePack serialization of a given JSON value
Serializes a given JSON value @ a j to a byte vector using the MessagePack
serialization format . MessagePack is a binary serialization format which
aims to be more compact than JSON itself , yet more efficient to parse .
The library uses the following mapping from JSON values types to
MessagePack types according to the MessagePack specification :
JSON value type | value / range | MessagePack type | first byte
- - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - - | - - - - - - - - - -
null | ` null ` | nil | 0xc0
boolean | ` true ` | true | 0xc3
boolean | ` false ` | false | 0xc2
number_integer | - 9223372036854775808. . - 2147483649 | int64 | 0xd3
number_integer | - 2147483648. . - 32769 | int32 | 0xd2
number_integer | - 32768. . - 129 | int16 | 0xd1
number_integer | - 128. . - 33 | int8 | 0xd0
number_integer | - 32. . - 1 | negative fixint | 0xe0 . .0 xff
number_integer | 0. .127 | positive fixint | 0x00 . .0 x7f
number_integer | 128. .255 | uint 8 | 0xcc
number_integer | 256. .65535 | uint 16 | 0xcd
number_integer | 65536. .4294967295 | uint 32 | 0xce
number_integer | 4294967296. .18446744073709551615 | uint 64 | 0xcf
number_unsigned | 0. .127 | positive fixint | 0x00 . .0 x7f
number_unsigned | 128. .255 | uint 8 | 0xcc
number_unsigned | 256. .65535 | uint 16 | 0xcd
number_unsigned | 65536. .4294967295 | uint 32 | 0xce
number_unsigned | 4294967296. .18446744073709551615 | uint 64 | 0xcf
number_float | * any value * | float 64 | 0xcb
string | * length * : 0. .31 | fixstr | 0xa0 . .0 xbf
string | * length * : 32. .255 | str 8 | 0xd9
string | * length * : 256. .65535 | str 16 | 0xda
string | * length * : 65536. .4294967295 | str 32 | 0xdb
array | * size * : 0. .15 | fixarray | 0x90 . .0 x9f
array | * size * : 16. .65535 | array 16 | 0xdc
array | * size * : 65536. .4294967295 | array 32 | 0xdd
object | * size * : 0. .15 | fix map | 0x80 . .0 x8f
object | * size * : 16. .65535 | map 16 | 0xde
object | * size * : 65536. .4294967295 | map 32 | 0xdf
@ note The mapping is * * complete * * in the sense that any JSON value type
can be converted to a MessagePack value .
@ note The following values can * * not * * be converted to a MessagePack value :
- strings with more than 4294967295 bytes
- arrays with more than 4294967295 elements
- objects with more than 4294967295 elements
@ note The following MessagePack types are not used in the conversion :
- bin 8 - bin 32 ( 0xc4 . .0 xc6 )
- ext 8 - ext 32 ( 0xc7 . .0 xc9 )
- float 32 ( 0xca )
- fixext 1 - fixext 16 ( 0xd4 . .0 xd8 )
@ note Any MessagePack output created @ ref to_msgpack can be successfully
parsed by @ ref from_msgpack .
@ param [ in ] j JSON value to serialize
@ return MessagePack serialization as byte vector
@ complexity Linear in the size of the JSON value @ a j .
@ liveexample { The example shows the serialization of a JSON value to a byte
vector in MessagePack format . , to_msgpack }
@ sa http : //msgpack.org
@ sa @ ref from_msgpack ( const std : : vector < uint8_t > & , const size_t ) for the
analogous deserialization
@ sa @ ref to_cbor ( const basic_json & for the related CBOR format
@ since version 2.0 .9
*/
static std : : vector < uint8_t > to_msgpack ( const basic_json & j )
{
std : : vector < uint8_t > result ;
binary_writer bw ( output_adapter < uint8_t > : : create ( result ) ) ;
bw . write_msgpack ( j ) ;
return result ;
}
/*!
@ brief create a JSON value from a byte vector in CBOR format
Deserializes a given byte vector @ a v to a JSON value using the CBOR
( Concise Binary Object Representation ) serialization format .
The library maps CBOR types to JSON value types as follows :
CBOR type | JSON value type | first byte
- - - - - - - - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - -
Integer | number_unsigned | 0x00 . .0 x17
Unsigned integer | number_unsigned | 0x18
Unsigned integer | number_unsigned | 0x19
Unsigned integer | number_unsigned | 0x1a
Unsigned integer | number_unsigned | 0x1b
Negative integer | number_integer | 0x20 . .0 x37
Negative integer | number_integer | 0x38
Negative integer | number_integer | 0x39
Negative integer | number_integer | 0x3a
Negative integer | number_integer | 0x3b
Negative integer | number_integer | 0x40 . .0 x57
UTF - 8 string | string | 0x60 . .0 x77
UTF - 8 string | string | 0x78
UTF - 8 string | string | 0x79
UTF - 8 string | string | 0x7a
UTF - 8 string | string | 0x7b
UTF - 8 string | string | 0x7f
array | array | 0x80 . .0 x97
array | array | 0x98
array | array | 0x99
array | array | 0x9a
array | array | 0x9b
array | array | 0x9f
map | object | 0xa0 . .0 xb7
map | object | 0xb8
map | object | 0xb9
map | object | 0xba
map | object | 0xbb
map | object | 0xbf
False | ` false ` | 0xf4
True | ` true ` | 0xf5
Nill | ` null ` | 0xf6
Half - Precision Float | number_float | 0xf9
Single - Precision Float | number_float | 0xfa
Double - Precision Float | number_float | 0xfb
@ warning The mapping is * * incomplete * * in the sense that not all CBOR
types can be converted to a JSON value . The following CBOR types
are not supported and will yield parse errors ( parse_error .112 ) :
- byte strings ( 0x40 . .0 x5f )
- date / time ( 0xc0 . .0 xc1 )
- bignum ( 0xc2 . .0 xc3 )
- decimal fraction ( 0xc4 )
- bigfloat ( 0xc5 )
- tagged items ( 0xc6 . .0 xd4 , 0xd8 . .0 xdb )
- expected conversions ( 0xd5 . .0 xd7 )
- simple values ( 0xe0 . .0 xf3 , 0xf8 )
- undefined ( 0xf7 )
@ warning CBOR allows map keys of any type , whereas JSON only allows
strings as keys in object values . Therefore , CBOR maps with keys
other than UTF - 8 strings are rejected ( parse_error .113 ) .
@ note Any CBOR output created @ ref to_cbor can be successfully parsed by
@ ref from_cbor .
@ param [ in ] v a byte vector in CBOR format
@ param [ in ] start_index the index to start reading from @ a v ( 0 by default )
@ return deserialized JSON value
@ throw parse_error .110 if the given vector ends prematurely
@ throw parse_error .112 if unsupported features from CBOR were
used in the given vector @ a v or if the input is not valid CBOR
@ throw parse_error .113 if a string was expected as map key , but not found
@ complexity Linear in the size of the byte vector @ a v .
@ liveexample { The example shows the deserialization of a byte vector in CBOR
format to a JSON value . , from_cbor }
@ sa http : //cbor.io
@ sa @ ref to_cbor ( const basic_json & ) for the analogous serialization
@ sa @ ref from_msgpack ( const std : : vector < uint8_t > & , const size_t ) for the
related MessagePack format
@ since version 2.0 .9 , parameter @ a start_index since 2.1 .1
*/
static basic_json from_cbor ( const std : : vector < uint8_t > & v ,
const size_t start_index = 0 )
{
binary_reader br ( input_adapter : : create ( v . begin ( ) + static_cast < difference_type > ( start_index ) , v . end ( ) ) ) ;
return br . parse_cbor ( ) ;
}
/*!
@ brief create a JSON value from a byte vector in MessagePack format
Deserializes a given byte vector @ a v to a JSON value using the MessagePack
serialization format .
The library maps MessagePack types to JSON value types as follows :
MessagePack type | JSON value type | first byte
- - - - - - - - - - - - - - - - | - - - - - - - - - - - - - - - | - - - - - - - - - -
positive fixint | number_unsigned | 0x00 . .0 x7f
fixmap | object | 0x80 . .0 x8f
fixarray | array | 0x90 . .0 x9f
fixstr | string | 0xa0 . .0 xbf
nil | ` null ` | 0xc0
false | ` false ` | 0xc2
true | ` true ` | 0xc3
float 32 | number_float | 0xca
float 64 | number_float | 0xcb
uint 8 | number_unsigned | 0xcc
uint 16 | number_unsigned | 0xcd
uint 32 | number_unsigned | 0xce
uint 64 | number_unsigned | 0xcf
int 8 | number_integer | 0xd0
int 16 | number_integer | 0xd1
int 32 | number_integer | 0xd2
int 64 | number_integer | 0xd3
str 8 | string | 0xd9
str 16 | string | 0xda
str 32 | string | 0xdb
array 16 | array | 0xdc
array 32 | array | 0xdd
map 16 | object | 0xde
map 32 | object | 0xdf
negative fixint | number_integer | 0xe0 - 0xff
@ warning The mapping is * * incomplete * * in the sense that not all
MessagePack types can be converted to a JSON value . The following
MessagePack types are not supported and will yield parse errors :
- bin 8 - bin 32 ( 0xc4 . .0 xc6 )
- ext 8 - ext 32 ( 0xc7 . .0 xc9 )
- fixext 1 - fixext 16 ( 0xd4 . .0 xd8 )
@ note Any MessagePack output created @ ref to_msgpack can be successfully
parsed by @ ref from_msgpack .
@ param [ in ] v a byte vector in MessagePack format
@ param [ in ] start_index the index to start reading from @ a v ( 0 by default )
@ return deserialized JSON value
@ throw parse_error .110 if the given vector ends prematurely
@ throw parse_error .112 if unsupported features from MessagePack were
used in the given vector @ a v or if the input is not valid MessagePack
@ throw parse_error .113 if a string was expected as map key , but not found
@ complexity Linear in the size of the byte vector @ a v .
@ liveexample { The example shows the deserialization of a byte vector in
MessagePack format to a JSON value . , from_msgpack }
@ sa http : //msgpack.org
@ sa @ ref to_msgpack ( const basic_json & ) for the analogous serialization
@ sa @ ref from_cbor ( const std : : vector < uint8_t > & , const size_t ) for the
related CBOR format
@ since version 2.0 .9 , parameter @ a start_index since 2.1 .1
*/
static basic_json from_msgpack ( const std : : vector < uint8_t > & v ,
const size_t start_index = 0 )
{
binary_reader br ( input_adapter : : create ( v . begin ( ) + static_cast < difference_type > ( start_index ) , v . end ( ) ) ) ;
return br . parse_msgpack ( ) ;
}
/// @}
//////////////////////
// lexer and parser //
//////////////////////
private :
/*!
@ brief lexical analysis
This class organizes the lexical analysis during JSON deserialization .
*/
class lexer
{
public :
/// token types for the parser
enum class token_type
{
uninitialized , ///< indicating the scanner is uninitialized
literal_true , ///< the `true` literal
literal_false , ///< the `false` literal
literal_null , ///< the `null` literal
value_string , ///< a string -- use get_string() for actual value
value_unsigned , ///< an unsigned integer -- use get_number_unsigned() for actual value
value_integer , ///< a signed integer -- use get_number_integer() for actual value
value_float , ///< an floating point number -- use get_number_float() for actual value
begin_array , ///< the character for array begin `[`
begin_object , ///< the character for object begin `{`
end_array , ///< the character for array end `]`
end_object , ///< the character for object end `}`
name_separator , ///< the name separator `:`
value_separator , ///< the value separator `,`
parse_error , ///< indicating a parse error
end_of_input ///< indicating the end of the input buffer
} ;
/// return name of values of type token_type (only used for errors)
static const char * token_type_name ( const token_type t ) noexcept
{
switch ( t )
{
case token_type : : uninitialized :
return " <uninitialized> " ;
case token_type : : literal_true :
return " true literal " ;
case token_type : : literal_false :
return " false literal " ;
case token_type : : literal_null :
return " null literal " ;
case token_type : : value_string :
return " string literal " ;
case lexer : : token_type : : value_unsigned :
case lexer : : token_type : : value_integer :
case lexer : : token_type : : value_float :
return " number literal " ;
case token_type : : begin_array :
return " '[' " ;
case token_type : : begin_object :
return " '{' " ;
case token_type : : end_array :
return " ']' " ;
case token_type : : end_object :
return " '}' " ;
case token_type : : name_separator :
return " ':' " ;
case token_type : : value_separator :
return " ',' " ;
case token_type : : parse_error :
return " <parse error> " ;
case token_type : : end_of_input :
return " end of input " ;
default :
{
// catch non-enum values
return " unknown token " ; // LCOV_EXCL_LINE
}
}
}
explicit lexer ( input_adapter_t adapter )
: ia ( adapter ) , decimal_point_char ( get_decimal_point ( ) )
{ }
private :
/////////////////////
// locales
/////////////////////
/// return the locale-dependent decimal point
static char get_decimal_point ( ) noexcept
{
const auto loc = localeconv ( ) ;
assert ( loc ! = nullptr ) ;
return ( loc - > decimal_point = = nullptr ) ? ' . ' : loc - > decimal_point [ 0 ] ;
}
/////////////////////
// scan functions
/////////////////////
/*!
@ brief get codepoint from 4 hex characters following ` \ u `
@ return codepoint or - 1 in case of an error ( e . g . EOF or non - hex
character )
*/
int get_codepoint ( )
{
// this function only makes sense after reading `\u`
assert ( current = = ' u ' ) ;
int codepoint = 0 ;
// byte 1: \uXxxx
switch ( get ( ) )
{
case ' 0 ' :
break ;
case ' 1 ' :
codepoint + = 0x1000 ;
break ;
case ' 2 ' :
codepoint + = 0x2000 ;
break ;
case ' 3 ' :
codepoint + = 0x3000 ;
break ;
case ' 4 ' :
codepoint + = 0x4000 ;
break ;
case ' 5 ' :
codepoint + = 0x5000 ;
break ;
case ' 6 ' :
codepoint + = 0x6000 ;
break ;
case ' 7 ' :
codepoint + = 0x7000 ;
break ;
case ' 8 ' :
codepoint + = 0x8000 ;
break ;
case ' 9 ' :
codepoint + = 0x9000 ;
break ;
case ' A ' :
case ' a ' :
codepoint + = 0xa000 ;
break ;
case ' B ' :
case ' b ' :
codepoint + = 0xb000 ;
break ;
case ' C ' :
case ' c ' :
codepoint + = 0xc000 ;
break ;
case ' D ' :
case ' d ' :
codepoint + = 0xd000 ;
break ;
case ' E ' :
case ' e ' :
codepoint + = 0xe000 ;
break ;
case ' F ' :
case ' f ' :
codepoint + = 0xf000 ;
break ;
default :
return - 1 ;
}
// byte 2: \uxXxx
switch ( get ( ) )
{
case ' 0 ' :
break ;
case ' 1 ' :
codepoint + = 0x0100 ;
break ;
case ' 2 ' :
codepoint + = 0x0200 ;
break ;
case ' 3 ' :
codepoint + = 0x0300 ;
break ;
case ' 4 ' :
codepoint + = 0x0400 ;
break ;
case ' 5 ' :
codepoint + = 0x0500 ;
break ;
case ' 6 ' :
codepoint + = 0x0600 ;
break ;
case ' 7 ' :
codepoint + = 0x0700 ;
break ;
case ' 8 ' :
codepoint + = 0x0800 ;
break ;
case ' 9 ' :
codepoint + = 0x0900 ;
break ;
case ' A ' :
case ' a ' :
codepoint + = 0x0a00 ;
break ;
case ' B ' :
case ' b ' :
codepoint + = 0x0b00 ;
break ;
case ' C ' :
case ' c ' :
codepoint + = 0x0c00 ;
break ;
case ' D ' :
case ' d ' :
codepoint + = 0x0d00 ;
break ;
case ' E ' :
case ' e ' :
codepoint + = 0x0e00 ;
break ;
case ' F ' :
case ' f ' :
codepoint + = 0x0f00 ;
break ;
default :
return - 1 ;
}
// byte 3: \uxxXx
switch ( get ( ) )
{
case ' 0 ' :
break ;
case ' 1 ' :
codepoint + = 0x0010 ;
break ;
case ' 2 ' :
codepoint + = 0x0020 ;
break ;
case ' 3 ' :
codepoint + = 0x0030 ;
break ;
case ' 4 ' :
codepoint + = 0x0040 ;
break ;
case ' 5 ' :
codepoint + = 0x0050 ;
break ;
case ' 6 ' :
codepoint + = 0x0060 ;
break ;
case ' 7 ' :
codepoint + = 0x0070 ;
break ;
case ' 8 ' :
codepoint + = 0x0080 ;
break ;
case ' 9 ' :
codepoint + = 0x0090 ;
break ;
case ' A ' :
case ' a ' :
codepoint + = 0x00a0 ;
break ;
case ' B ' :
case ' b ' :
codepoint + = 0x00b0 ;
break ;
case ' C ' :
case ' c ' :
codepoint + = 0x00c0 ;
break ;
case ' D ' :
case ' d ' :
codepoint + = 0x00d0 ;
break ;
case ' E ' :
case ' e ' :
codepoint + = 0x00e0 ;
break ;
case ' F ' :
case ' f ' :
codepoint + = 0x00f0 ;
break ;
default :
return - 1 ;
}
// byte 4: \uxxxX
switch ( get ( ) )
{
case ' 0 ' :
break ;
case ' 1 ' :
codepoint + = 0x0001 ;
break ;
case ' 2 ' :
codepoint + = 0x0002 ;
break ;
case ' 3 ' :
codepoint + = 0x0003 ;
break ;
case ' 4 ' :
codepoint + = 0x0004 ;
break ;
case ' 5 ' :
codepoint + = 0x0005 ;
break ;
case ' 6 ' :
codepoint + = 0x0006 ;
break ;
case ' 7 ' :
codepoint + = 0x0007 ;
break ;
case ' 8 ' :
codepoint + = 0x0008 ;
break ;
case ' 9 ' :
codepoint + = 0x0009 ;
break ;
case ' A ' :
case ' a ' :
codepoint + = 0x000a ;
break ;
case ' B ' :
case ' b ' :
codepoint + = 0x000b ;
break ;
case ' C ' :
case ' c ' :
codepoint + = 0x000c ;
break ;
case ' D ' :
case ' d ' :
codepoint + = 0x000d ;
break ;
case ' E ' :
case ' e ' :
codepoint + = 0x000e ;
break ;
case ' F ' :
case ' f ' :
codepoint + = 0x000f ;
break ;
default :
return - 1 ;
}
return codepoint ;
}
/*!
@ brief create diagnostic representation of a codepoint
@ return string " U+XXXX " for codepoint XXXX
*/
static std : : string codepoint_to_string ( int codepoint )
{
std : : stringstream ss ;
ss < < " U+ " < < std : : setw ( 4 ) < < std : : uppercase < < std : : setfill ( ' 0 ' ) < < std : : hex < < codepoint ;
return ss . str ( ) ;
}
/*!
@ brief scan a string literal
This function scans a string according to Sect . 7 of RFC 7159. While
scanning , bytes are escaped and copied into buffer yytext . Then the
function returns successfully , yytext is null - terminated and yylen
contains the number of bytes in the string .
@ return token_type : : value_string if string could be successfully
scanned , token_type : : parse_error otherwise
@ note In case of errors , variable error_message contains a textual
description .
*/
token_type scan_string ( )
{
// reset yytext (ignore opening quote)
reset ( ) ;
// we entered the function by reading an open quote
assert ( current = = ' \" ' ) ;
while ( true )
{
// get next character
get ( ) ;
switch ( current )
{
// end of file while parsing string
case std : : char_traits < char > : : eof ( ) :
{
error_message = " invalid string: missing closing quote " ;
return token_type : : parse_error ;
}
// closing quote
case ' \" ' :
{
// terminate yytext
add ( ' \0 ' ) ;
- - yylen ;
return token_type : : value_string ;
}
// escapes
case ' \\ ' :
{
switch ( get ( ) )
{
// quotation mark
case ' \" ' :
add ( ' \" ' ) ;
break ;
// reverse solidus
case ' \\ ' :
add ( ' \\ ' ) ;
break ;
// solidus
case ' / ' :
add ( ' / ' ) ;
break ;
// backspace
case ' b ' :
add ( ' \b ' ) ;
break ;
// form feed
case ' f ' :
add ( ' \f ' ) ;
break ;
// line feed
case ' n ' :
add ( ' \n ' ) ;
break ;
// carriage return
case ' r ' :
add ( ' \r ' ) ;
break ;
// tab
case ' t ' :
add ( ' \t ' ) ;
break ;
// unicode escapes
case ' u ' :
{
int codepoint ;
int codepoint1 = get_codepoint ( ) ;
if ( JSON_UNLIKELY ( codepoint1 = = - 1 ) )
{
error_message = " invalid string: ' \\ u' must be followed by 4 hex digits " ;
return token_type : : parse_error ;
}
// check if code point is a high surrogate
if ( 0xD800 < = codepoint1 and codepoint1 < = 0xDBFF )
{
// expect next \uxxxx entry
if ( JSON_LIKELY ( get ( ) = = ' \\ ' and get ( ) = = ' u ' ) )
{
const int codepoint2 = get_codepoint ( ) ;
if ( JSON_UNLIKELY ( codepoint2 = = - 1 ) )
{
error_message = " invalid string: ' \\ u' must be followed by 4 hex digits " ;
return token_type : : parse_error ;
}
// check if codepoint2 is a low surrogate
if ( JSON_LIKELY ( 0xDC00 < = codepoint2 and codepoint2 < = 0xDFFF ) )
{
codepoint =
// high surrogate occupies the most significant 22 bits
( codepoint1 < < 10 )
// low surrogate occupies the least significant 15 bits
+ codepoint2
// there is still the 0xD800, 0xDC00 and 0x10000 noise
// in the result so we have to subtract with:
// (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
- 0x35FDC00 ;
}
else
{
error_message = " invalid string: surrogate " + codepoint_to_string ( codepoint1 ) + " must be followed by U+DC00..U+DFFF instead of " + codepoint_to_string ( codepoint2 ) ;
return token_type : : parse_error ;
}
}
else
{
error_message = " invalid string: surrogate " + codepoint_to_string ( codepoint1 ) + " must be followed by U+DC00..U+DFFF " ;
return token_type : : parse_error ;
}
}
else
{
if ( JSON_UNLIKELY ( 0xDC00 < = codepoint1 and codepoint1 < = 0xDFFF ) )
{
error_message = " invalid string: surrogate " + codepoint_to_string ( codepoint1 ) + " must follow U+D800..U+DBFF " ;
return token_type : : parse_error ;
}
// only work with first code point
codepoint = codepoint1 ;
}
// result of the above calculation yields a proper codepoint
assert ( 0x00 < = codepoint and codepoint < = 0x10FFFF ) ;
// translate code point to bytes
if ( codepoint < 0x80 )
{
// 1-byte characters: 0xxxxxxx (ASCII)
add ( codepoint ) ;
}
else if ( codepoint < = 0x7ff )
{
// 2-byte characters: 110xxxxx 10xxxxxx
add ( 0xC0 | ( codepoint > > 6 ) ) ;
add ( 0x80 | ( codepoint & 0x3F ) ) ;
}
else if ( codepoint < = 0xffff )
{
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
add ( 0xE0 | ( codepoint > > 12 ) ) ;
add ( 0x80 | ( ( codepoint > > 6 ) & 0x3F ) ) ;
add ( 0x80 | ( codepoint & 0x3F ) ) ;
}
else
{
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
add ( 0xF0 | ( codepoint > > 18 ) ) ;
add ( 0x80 | ( ( codepoint > > 12 ) & 0x3F ) ) ;
add ( 0x80 | ( ( codepoint > > 6 ) & 0x3F ) ) ;
add ( 0x80 | ( codepoint & 0x3F ) ) ;
}
break ;
}
// other characters after escape
default :
error_message = " invalid string: forbidden character after backslash " ;
return token_type : : parse_error ;
}
break ;
}
// invalid control characters
case 0x00 :
case 0x01 :
case 0x02 :
case 0x03 :
case 0x04 :
case 0x05 :
case 0x06 :
case 0x07 :
case 0x08 :
case 0x09 :
case 0x0a :
case 0x0b :
case 0x0c :
case 0x0d :
case 0x0e :
case 0x0f :
case 0x10 :
case 0x11 :
case 0x12 :
case 0x13 :
case 0x14 :
case 0x15 :
case 0x16 :
case 0x17 :
case 0x18 :
case 0x19 :
case 0x1a :
case 0x1b :
case 0x1c :
case 0x1d :
case 0x1e :
case 0x1f :
{
error_message = " invalid string: control character " + codepoint_to_string ( current ) + " must be escaped " ;
return token_type : : parse_error ;
}
// U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
case 0x20 :
case 0x21 :
case 0x23 :
case 0x24 :
case 0x25 :
case 0x26 :
case 0x27 :
case 0x28 :
case 0x29 :
case 0x2a :
case 0x2b :
case 0x2c :
case 0x2d :
case 0x2e :
case 0x2f :
case 0x30 :
case 0x31 :
case 0x32 :
case 0x33 :
case 0x34 :
case 0x35 :
case 0x36 :
case 0x37 :
case 0x38 :
case 0x39 :
case 0x3a :
case 0x3b :
case 0x3c :
case 0x3d :
case 0x3e :
case 0x3f :
case 0x40 :
case 0x41 :
case 0x42 :
case 0x43 :
case 0x44 :
case 0x45 :
case 0x46 :
case 0x47 :
case 0x48 :
case 0x49 :
case 0x4a :
case 0x4b :
case 0x4c :
case 0x4d :
case 0x4e :
case 0x4f :
case 0x50 :
case 0x51 :
case 0x52 :
case 0x53 :
case 0x54 :
case 0x55 :
case 0x56 :
case 0x57 :
case 0x58 :
case 0x59 :
case 0x5a :
case 0x5b :
case 0x5d :
case 0x5e :
case 0x5f :
case 0x60 :
case 0x61 :
case 0x62 :
case 0x63 :
case 0x64 :
case 0x65 :
case 0x66 :
case 0x67 :
case 0x68 :
case 0x69 :
case 0x6a :
case 0x6b :
case 0x6c :
case 0x6d :
case 0x6e :
case 0x6f :
case 0x70 :
case 0x71 :
case 0x72 :
case 0x73 :
case 0x74 :
case 0x75 :
case 0x76 :
case 0x77 :
case 0x78 :
case 0x79 :
case 0x7a :
case 0x7b :
case 0x7c :
case 0x7d :
case 0x7e :
case 0x7f :
{
add ( current ) ;
break ;
}
// U+0080..U+07FF: bytes C2..DF 80..BF
case 0xc2 :
case 0xc3 :
case 0xc4 :
case 0xc5 :
case 0xc6 :
case 0xc7 :
case 0xc8 :
case 0xc9 :
case 0xca :
case 0xcb :
case 0xcc :
case 0xcd :
case 0xce :
case 0xcf :
case 0xd0 :
case 0xd1 :
case 0xd2 :
case 0xd3 :
case 0xd4 :
case 0xd5 :
case 0xd6 :
case 0xd7 :
case 0xd8 :
case 0xd9 :
case 0xda :
case 0xdb :
case 0xdc :
case 0xdd :
case 0xde :
case 0xdf :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+0800..U+0FFF: bytes E0 A0..BF 80..BF
case 0xe0 :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0xa0 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
// U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
case 0xe1 :
case 0xe2 :
case 0xe3 :
case 0xe4 :
case 0xe5 :
case 0xe6 :
case 0xe7 :
case 0xe8 :
case 0xe9 :
case 0xea :
case 0xeb :
case 0xec :
case 0xee :
case 0xef :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+D000..U+D7FF: bytes ED 80..9F 80..BF
case 0xed :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0x9f ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
case 0xf0 :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x90 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
case 0xf1 :
case 0xf2 :
case 0xf3 :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
case 0xf4 :
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0x8f ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
get ( ) ;
if ( JSON_LIKELY ( 0x80 < = current and current < = 0xbf ) )
{
add ( current ) ;
continue ;
}
}
}
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
// remaining bytes (80..C1 and F5..FF) are ill-formed
default :
{
error_message = " invalid string: ill-formed UTF-8 byte " ;
return token_type : : parse_error ;
}
}
}
}
static void strtof ( float & f , const char * str , char * * endptr ) noexcept
{
f = std : : strtof ( str , endptr ) ;
}
static void strtof ( double & f , const char * str , char * * endptr ) noexcept
{
f = std : : strtod ( str , endptr ) ;
}
static void strtof ( long double & f , const char * str , char * * endptr ) noexcept
{
f = std : : strtold ( str , endptr ) ;
}
/*!
@ brief scan a number literal
This function scans a string according to Sect . 6 of RFC 7159.
The function is realized with a deterministic finite state machine
derived from the grammar described in RFC 7159. Starting in state
" init " , the input is read and used to determined the next state . Only
state " done " accepts the number . State " error " is a trap state to model
errors . In the table below , " anything " means any character but the ones
listed before .
state | 0 | 1 - 9 | e E | + | - | . | anything
- - - - - - - - - | - - - - - - - - - - | - - - - - - - - - - | - - - - - - - - - - | - - - - - - - - - | - - - - - - - - - | - - - - - - - - - - | - - - - - - - - - - -
init | zero | any1 | [ error ] | [ error ] | minus | [ error ] | [ error ]
minus | zero | any1 | [ error ] | [ error ] | [ error ] | [ error ] | [ error ]
zero | done | done | exponent | done | done | decimal1 | done
any1 | any1 | any1 | exponent | done | done | decimal1 | done
decimal1 | decimal2 | [ error ] | [ error ] | [ error ] | [ error ] | [ error ] | [ error ]
decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
exponent | any2 | any2 | [ error ] | sign | sign | [ error ] | [ error ]
sign | any2 | any2 | [ error ] | [ error ] | [ error ] | [ error ] | [ error ]
any2 | any2 | any2 | done | done | done | done | done
The state machine is realized with one label per state ( prefixed with
" scan_number_ " ) and ` goto ` statements between them . The state machine
contains cycles , but any cycle can be left when EOF is read . Therefore ,
the function is guaranteed to terminate .
During scanning , the read bytes are stored in yytext . This string is
then converted to a signed integer , an unsigned integer , or a
floating - point number .
@ return token_type : : value_unsigned , token_type : : value_integer , or
token_type : : value_float if number could be successfully scanned ,
token_type : : parse_error otherwise
@ note The scanner is independent of the current locale . Internally , the
locale ' s decimal point is used instead of ` . ` to work with the
locale - dependent converters .
*/
token_type scan_number ( )
{
// reset yytext to store the number's bytes
reset ( ) ;
// the type of the parsed number; initially set to unsigned; will be
// changed if minus sign, decimal point or exponent is read
token_type number_type = token_type : : value_unsigned ;
// state (init): we just found out we need to scan a number
switch ( current )
{
case ' - ' :
{
add ( current ) ;
goto scan_number_minus ;
}
case ' 0 ' :
{
add ( current ) ;
goto scan_number_zero ;
}
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any1 ;
}
default :
{
// all other characters are rejected outside scan_number()
assert ( false ) ; // LCOV_EXCL_LINE
}
}
scan_number_minus :
// state: we just parsed a leading minus sign
number_type = token_type : : value_integer ;
switch ( get ( ) )
{
case ' 0 ' :
{
add ( current ) ;
goto scan_number_zero ;
}
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any1 ;
}
default :
{
error_message = " invalid number; expected digit after '-' " ;
return token_type : : parse_error ;
}
}
scan_number_zero :
// state: we just parse a zero (maybe with a leading minus sign)
switch ( get ( ) )
{
case ' . ' :
{
add ( decimal_point_char ) ;
goto scan_number_decimal1 ;
}
case ' e ' :
case ' E ' :
{
add ( current ) ;
goto scan_number_exponent ;
}
default :
{
goto scan_number_done ;
}
}
scan_number_any1 :
// state: we just parsed a number 0-9 (maybe with a leading minus sign)
switch ( get ( ) )
{
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any1 ;
}
case ' . ' :
{
add ( decimal_point_char ) ;
goto scan_number_decimal1 ;
}
case ' e ' :
case ' E ' :
{
add ( current ) ;
goto scan_number_exponent ;
}
default :
{
goto scan_number_done ;
}
}
scan_number_decimal1 :
// state: we just parsed a decimal point
number_type = token_type : : value_float ;
switch ( get ( ) )
{
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_decimal2 ;
}
default :
{
error_message = " invalid number; expected digit after '.' " ;
return token_type : : parse_error ;
}
}
scan_number_decimal2 :
// we just parsed at least one number after a decimal point
switch ( get ( ) )
{
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_decimal2 ;
}
case ' e ' :
case ' E ' :
{
add ( current ) ;
goto scan_number_exponent ;
}
default :
{
goto scan_number_done ;
}
}
scan_number_exponent :
// we just parsed an exponent
number_type = token_type : : value_float ;
switch ( get ( ) )
{
case ' + ' :
case ' - ' :
{
add ( current ) ;
goto scan_number_sign ;
}
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any2 ;
}
default :
{
error_message = " invalid number; expected '+', '-', or digit after exponent " ;
return token_type : : parse_error ;
}
}
scan_number_sign :
// we just parsed an exponent sign
switch ( get ( ) )
{
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any2 ;
}
default :
{
error_message = " invalid number; expected digit after exponent sign " ;
return token_type : : parse_error ;
}
}
scan_number_any2 :
// we just parsed a number after the exponent or exponent sign
switch ( get ( ) )
{
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
{
add ( current ) ;
goto scan_number_any2 ;
}
default :
{
goto scan_number_done ;
}
}
scan_number_done :
// unget the character after the number (we only read it to know
// that we are done scanning a number)
- - chars_read ;
next_unget = true ;
// terminate token
add ( ' \0 ' ) ;
- - yylen ;
// try to parse integers first and fall back to floats
if ( number_type = = token_type : : value_unsigned )
{
char * endptr = nullptr ;
errno = 0 ;
const auto x = std : : strtoull ( yytext . data ( ) , & endptr , 10 ) ;
// we checked the number format before
assert ( endptr = = yytext . data ( ) + yylen ) ;
if ( errno = = 0 )
{
value_unsigned = static_cast < number_unsigned_t > ( x ) ;
if ( value_unsigned = = x )
{
return token_type : : value_unsigned ;
}
}
}
else if ( number_type = = token_type : : value_integer )
{
char * endptr = nullptr ;
errno = 0 ;
const auto x = std : : strtoll ( yytext . data ( ) , & endptr , 10 ) ;
// we checked the number format before
assert ( endptr = = yytext . data ( ) + yylen ) ;
if ( errno = = 0 )
{
value_integer = static_cast < number_integer_t > ( x ) ;
if ( value_integer = = x )
{
return token_type : : value_integer ;
}
}
}
// this code is reached if we parse a floating-point number or if
// an integer conversion above failed
strtof ( value_float , yytext . data ( ) , nullptr ) ;
return token_type : : value_float ;
}
token_type scan_true ( )
{
assert ( current = = ' t ' ) ;
if ( JSON_LIKELY ( ( get ( ) = = ' r ' and get ( ) = = ' u ' and get ( ) = = ' e ' ) ) )
{
return token_type : : literal_true ;
}
error_message = " invalid literal; expected 'true' " ;
return token_type : : parse_error ;
}
token_type scan_false ( )
{
assert ( current = = ' f ' ) ;
if ( JSON_LIKELY ( ( get ( ) = = ' a ' and get ( ) = = ' l ' and get ( ) = = ' s ' and get ( ) = = ' e ' ) ) )
{
return token_type : : literal_false ;
}
error_message = " invalid literal; expected 'false' " ;
return token_type : : parse_error ;
}
token_type scan_null ( )
{
assert ( current = = ' n ' ) ;
if ( JSON_LIKELY ( ( get ( ) = = ' u ' and get ( ) = = ' l ' and get ( ) = = ' l ' ) ) )
{
return token_type : : literal_null ;
}
error_message = " invalid literal; expected 'null' " ;
return token_type : : parse_error ;
}
/////////////////////
// input management
/////////////////////
/// reset yytext
void reset ( ) noexcept
{
yylen = 0 ;
start_pos = chars_read - 1 ;
}
/// get a character from the input
int get ( )
{
+ + chars_read ;
return next_unget
? ( next_unget = false , current )
: ( current = ia - > get_character ( ) ) ;
}
/// add a character to yytext
void add ( int c )
{
// resize yytext if necessary; this condition is deemed unlikely,
// because we start with a 1024-byte buffer
if ( JSON_UNLIKELY ( ( yylen + 1 > yytext . capacity ( ) ) ) )
{
yytext . resize ( 2 * yytext . capacity ( ) , ' \0 ' ) ;
}
yytext [ yylen + + ] = static_cast < char > ( c ) ;
}
public :
/////////////////////
// value getters
/////////////////////
/// return integer value
constexpr number_integer_t get_number_integer ( ) const noexcept
{
return value_integer ;
}
/// return unsigned integer value
constexpr number_unsigned_t get_number_unsigned ( ) const noexcept
{
return value_unsigned ;
}
/// return floating-point value
constexpr number_float_t get_number_float ( ) const noexcept
{
return value_float ;
}
/// return string value
const std : : string get_string ( )
{
// yytext cannot be returned as char*, because it may contain a
// null byte (parsed as "\u0000")
return std : : string ( yytext . data ( ) , yylen ) ;
}
/////////////////////
// diagnostics
/////////////////////
/// return position of last read token
constexpr size_t get_position ( ) const noexcept
{
return chars_read ;
}
/// return the last read token (for errors only)
std : : string get_token_string ( ) const
{
// get the raw byte sequence of the last token
std : : string s = ia - > read ( start_pos , chars_read - start_pos ) ;
// escape control characters
std : : string result ;
for ( auto c : s )
{
if ( c = = ' \0 ' or c = = std : : char_traits < char > : : eof ( ) )
{
// ignore EOF
continue ;
}
else if ( ' \x00 ' < = c and c < = ' \x1f ' )
{
// escape control characters
result + = " < " + codepoint_to_string ( c ) + " > " ;
}
else
{
// add character as is
result . append ( 1 , c ) ;
}
}
return result ;
}
/// return syntax error message
const std : : string & get_error_message ( ) const noexcept
{
return error_message ;
}
/////////////////////
// actual scanner
/////////////////////
token_type scan ( )
{
// read next character and ignore whitespace
do
{
get ( ) ;
}
while ( current = = ' ' or current = = ' \t ' or current = = ' \n ' or current = = ' \r ' ) ;
switch ( current )
{
// structural characters
case ' [ ' :
return token_type : : begin_array ;
case ' ] ' :
return token_type : : end_array ;
case ' { ' :
return token_type : : begin_object ;
case ' } ' :
return token_type : : end_object ;
case ' : ' :
return token_type : : name_separator ;
case ' , ' :
return token_type : : value_separator ;
// literals
case ' t ' :
return scan_true ( ) ;
case ' f ' :
return scan_false ( ) ;
case ' n ' :
return scan_null ( ) ;
// string
case ' \" ' :
return scan_string ( ) ;
// number
case ' - ' :
case ' 0 ' :
case ' 1 ' :
case ' 2 ' :
case ' 3 ' :
case ' 4 ' :
case ' 5 ' :
case ' 6 ' :
case ' 7 ' :
case ' 8 ' :
case ' 9 ' :
return scan_number ( ) ;
// end of input (the null byte is needed when parsing from
// string literals)
case ' \0 ' :
case std : : char_traits < char > : : eof ( ) :
return token_type : : end_of_input ;
// error
default :
error_message = " invalid literal " ;
return token_type : : parse_error ;
}
}
private :
/// input adapter
input_adapter_t ia = nullptr ;
/// the current character
int current = std : : char_traits < char > : : eof ( ) ;
/// whether get() should return the last character again
bool next_unget = false ;
/// the number of characters read
size_t chars_read = 0 ;
/// the start position of the current token
size_t start_pos = 0 ;
/// buffer for variable-length tokens (numbers, strings)
std : : vector < char > yytext = std : : vector < char > ( 1024 , ' \0 ' ) ;
/// current index in yytext
size_t yylen = 0 ;
/// a description of occurred lexer errors
std : : string error_message = " " ;
// number values
number_integer_t value_integer = 0 ;
number_unsigned_t value_unsigned = 0 ;
number_float_t value_float = 0 ;
/// the decimal point
const char decimal_point_char = ' . ' ;
} ;
/*!
@ brief syntax analysis
This class implements a recursive decent parser .
*/
class parser
{
public :
/// a parser reading from an input adapter
explicit parser ( input_adapter_t adapter ,
const parser_callback_t cb = nullptr )
: callback ( cb ) , m_lexer ( adapter )
{ }
/*!
@ brief public parser interface
@ param [ in ] strict whether to expect the last token to be EOF
@ return parsed JSON value
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
*/
basic_json parse ( const bool strict = true )
{
// read first token
get_token ( ) ;
basic_json result = parse_internal ( true ) ;
result . assert_invariant ( ) ;
if ( strict )
{
get_token ( ) ;
expect ( lexer : : token_type : : end_of_input ) ;
}
// return parser result and replace it with null in case the
// top-level value was discarded by the callback function
return result . is_discarded ( ) ? basic_json ( ) : std : : move ( result ) ;
}
/*!
@ brief public accept interface
@ param [ in ] strict whether to expect the last token to be EOF
@ return whether the input is a proper JSON text
*/
bool accept ( const bool strict = true )
{
// read first token
get_token ( ) ;
if ( not accept_internal ( ) )
{
return false ;
}
if ( strict and get_token ( ) ! = lexer : : token_type : : end_of_input )
{
return false ;
}
return true ;
}
private :
/*!
@ brief the actual parser
@ throw parse_error .101 in case of an unexpected token
@ throw parse_error .102 if to_unicode fails or surrogate error
@ throw parse_error .103 if to_unicode fails
*/
basic_json parse_internal ( bool keep )
{
auto result = basic_json ( value_t : : discarded ) ;
switch ( last_token )
{
case lexer : : token_type : : begin_object :
{
if ( keep and ( not callback
or ( ( keep = callback ( depth + + , parse_event_t : : object_start , result ) ) ! = 0 ) ) )
{
// explicitly set result to object to cope with {}
result . m_type = value_t : : object ;
result . m_value = value_t : : object ;
}
// read next token
get_token ( ) ;
// closing } -> we are done
if ( last_token = = lexer : : token_type : : end_object )
{
if ( keep and callback and not callback ( - - depth , parse_event_t : : object_end , result ) )
{
result = basic_json ( value_t : : discarded ) ;
}
return result ;
}
// parse values
while ( true )
{
// store key
expect ( lexer : : token_type : : value_string ) ;
const auto key = m_lexer . get_string ( ) ;
bool keep_tag = false ;
if ( keep )
{
if ( callback )
{
basic_json k ( key ) ;
keep_tag = callback ( depth , parse_event_t : : key , k ) ;
}
else
{
keep_tag = true ;
}
}
// parse separator (:)
get_token ( ) ;
expect ( lexer : : token_type : : name_separator ) ;
// parse and add value
get_token ( ) ;
auto value = parse_internal ( keep ) ;
if ( keep and keep_tag and not value . is_discarded ( ) )
{
result [ key ] = std : : move ( value ) ;
}
// comma -> next value
get_token ( ) ;
if ( last_token = = lexer : : token_type : : value_separator )
{
get_token ( ) ;
continue ;
}
// closing }
expect ( lexer : : token_type : : end_object ) ;
break ;
}
if ( keep and callback and not callback ( - - depth , parse_event_t : : object_end , result ) )
{
result = basic_json ( value_t : : discarded ) ;
}
return result ;
}
case lexer : : token_type : : begin_array :
{
if ( keep and ( not callback
or ( ( keep = callback ( depth + + , parse_event_t : : array_start , result ) ) ! = 0 ) ) )
{
// explicitly set result to object to cope with []
result . m_type = value_t : : array ;
result . m_value = value_t : : array ;
}
// read next token
get_token ( ) ;
// closing ] -> we are done
if ( last_token = = lexer : : token_type : : end_array )
{
if ( callback and not callback ( - - depth , parse_event_t : : array_end , result ) )
{
result = basic_json ( value_t : : discarded ) ;
}
return result ;
}
// parse values
while ( true )
{
// parse value
auto value = parse_internal ( keep ) ;
if ( keep and not value . is_discarded ( ) )
{
result . push_back ( std : : move ( value ) ) ;
}
// comma -> next value
get_token ( ) ;
if ( last_token = = lexer : : token_type : : value_separator )
{
get_token ( ) ;
continue ;
}
// closing ]
expect ( lexer : : token_type : : end_array ) ;
break ;
}
if ( keep and callback and not callback ( - - depth , parse_event_t : : array_end , result ) )
{
result = basic_json ( value_t : : discarded ) ;
}
return result ;
}
case lexer : : token_type : : literal_null :
{
result . m_type = value_t : : null ;
break ;
}
case lexer : : token_type : : value_string :
{
result = basic_json ( m_lexer . get_string ( ) ) ;
break ;
}
case lexer : : token_type : : literal_true :
{
result . m_type = value_t : : boolean ;
result . m_value = true ;
break ;
}
case lexer : : token_type : : literal_false :
{
result . m_type = value_t : : boolean ;
result . m_value = false ;
break ;
}
case lexer : : token_type : : value_unsigned :
{
result . m_type = value_t : : number_unsigned ;
result . m_value = m_lexer . get_number_unsigned ( ) ;
break ;
}
case lexer : : token_type : : value_integer :
{
result . m_type = value_t : : number_integer ;
result . m_value = m_lexer . get_number_integer ( ) ;
break ;
}
case lexer : : token_type : : value_float :
{
result . m_type = value_t : : number_float ;
result . m_value = m_lexer . get_number_float ( ) ;
// throw in case of infinity or NAN
if ( JSON_UNLIKELY ( not std : : isfinite ( result . m_value . number_float ) ) )
{
JSON_THROW ( out_of_range : : create ( 406 , " number overflow parsing ' " + m_lexer . get_token_string ( ) + " ' " ) ) ;
}
break ;
}
default :
{
// the last token was unexpected
unexpect ( last_token ) ;
}
}
if ( keep and callback and not callback ( depth , parse_event_t : : value , result ) )
{
result = basic_json ( value_t : : discarded ) ;
}
return result ;
}
/*!
@ brief the acutal acceptor
@ invariant 1. The last token is not yet processed . Therefore , the
caller of this function must make sure a token has
been read .
2. When this function returns , the last token is processed .
That is , the last read character was already considered .
This invariant makes sure that no token needs to be " unput " .
*/
bool accept_internal ( )
{
switch ( last_token )
{
case lexer : : token_type : : begin_object :
{
// read next token
get_token ( ) ;
// closing } -> we are done
if ( last_token = = lexer : : token_type : : end_object )
{
return true ;
}
// parse values
while ( true )
{
// parse key
if ( last_token ! = lexer : : token_type : : value_string )
{
return false ;
}
// parse separator (:)
get_token ( ) ;
if ( last_token ! = lexer : : token_type : : name_separator )
{
return false ;
}
// parse value
get_token ( ) ;
if ( not accept_internal ( ) )
{
return false ;
}
// comma -> next value
get_token ( ) ;
if ( last_token = = lexer : : token_type : : value_separator )
{
get_token ( ) ;
continue ;
}
// closing }
if ( last_token ! = lexer : : token_type : : end_object )
{
return false ;
}
return true ;
}
}
case lexer : : token_type : : begin_array :
{
// read next token
get_token ( ) ;
// closing ] -> we are done
if ( last_token = = lexer : : token_type : : end_array )
{
return true ;
}
// parse values
while ( true )
{
// parse value
if ( not accept_internal ( ) )
{
return false ;
}
// comma -> next value
get_token ( ) ;
if ( last_token = = lexer : : token_type : : value_separator )
{
get_token ( ) ;
continue ;
}
// closing ]
if ( last_token ! = lexer : : token_type : : end_array )
{
return false ;
}
return true ;
}
}
case lexer : : token_type : : literal_false :
case lexer : : token_type : : literal_null :
case lexer : : token_type : : literal_true :
case lexer : : token_type : : value_float :
case lexer : : token_type : : value_integer :
case lexer : : token_type : : value_string :
case lexer : : token_type : : value_unsigned :
{
return true ;
}
default :
{
// the last token was unexpected
return false ;
}
}
}
/// get next token from lexer
typename lexer : : token_type get_token ( )
{
last_token = m_lexer . scan ( ) ;
return last_token ;
}
/*!
@ throw parse_error .101 if expected token did not occur
*/
void expect ( typename lexer : : token_type t ) const
{
if ( JSON_UNLIKELY ( t ! = last_token ) )
{
std : : string error_msg = " syntax error - " ;
if ( last_token = = lexer : : token_type : : parse_error )
{
error_msg + = m_lexer . get_error_message ( ) + " ; last read: ' " + m_lexer . get_token_string ( ) + " ' " ;
}
else
{
error_msg + = " unexpected " + std : : string ( lexer : : token_type_name ( last_token ) ) ;
}
error_msg + = " ; expected " + std : : string ( lexer : : token_type_name ( t ) ) ;
JSON_THROW ( parse_error : : create ( 101 , m_lexer . get_position ( ) , error_msg ) ) ;
}
}
/*!
@ throw parse_error .101 if unexpected token occurred
*/
void unexpect ( typename lexer : : token_type t ) const
{
if ( JSON_UNLIKELY ( t = = last_token ) )
{
std : : string error_msg = " syntax error - " ;
if ( last_token = = lexer : : token_type : : parse_error )
{
error_msg + = m_lexer . get_error_message ( ) + " ; last read ' " + m_lexer . get_token_string ( ) + " ' " ;
}
else
{
error_msg + = " unexpected " + std : : string ( lexer : : token_type_name ( last_token ) ) ;
}
JSON_THROW ( parse_error : : create ( 101 , m_lexer . get_position ( ) , error_msg ) ) ;
}
}
private :
/// current level of recursion
int depth = 0 ;
/// callback function
const parser_callback_t callback = nullptr ;
/// the type of the last read token
typename lexer : : token_type last_token = lexer : : token_type : : uninitialized ;
/// the lexer
lexer m_lexer ;
} ;
public :
/*!
@ brief JSON Pointer
A JSON pointer defines a string syntax for identifying a specific value
within a JSON document . It can be used with functions ` at ` and
` operator [ ] ` . Furthermore , JSON pointers are the base for JSON patches .
@ sa [ RFC 6901 ] ( https : //tools.ietf.org/html/rfc6901)
@ since version 2.0 .0
*/
class json_pointer
{
/// allow basic_json to access private members
friend class basic_json ;
public :
/*!
@ brief create JSON pointer
Create a JSON pointer according to the syntax described in
[ Section 3 of RFC6901 ] ( https : //tools.ietf.org/html/rfc6901#section-3).
@ param [ in ] s string representing the JSON pointer ; if omitted , the
empty string is assumed which references the whole JSON
value
@ throw parse_error .107 if the given JSON pointer @ a s is nonempty and
does not begin with a slash ( ` / ` ) ; see example below
@ throw parse_error .108 if a tilde ( ` ~ ` ) in the given JSON pointer @ a s
is not followed by ` 0 ` ( representing ` ~ ` ) or ` 1 ` ( representing ` / ` ) ;
see example below
@ liveexample { The example shows the construction several valid JSON
pointers as well as the exceptional behavior . , json_pointer }
@ since version 2.0 .0
*/
explicit json_pointer ( const std : : string & s = " " )
: reference_tokens ( split ( s ) )
{ }
/*!
@ brief return a string representation of the JSON pointer
@ invariant For each JSON pointer ` ptr ` , it holds :
@ code { . cpp }
ptr = = json_pointer ( ptr . to_string ( ) ) ;
@ endcode
@ return a string representation of the JSON pointer
@ liveexample { The example shows the result of ` to_string ` . ,
json_pointer__to_string }
@ since version 2.0 .0
*/
std : : string to_string ( ) const noexcept
{
return std : : accumulate ( reference_tokens . begin ( ) ,
reference_tokens . end ( ) , std : : string { } ,
[ ] ( const std : : string & a , const std : : string & b )
{
return a + " / " + escape ( b ) ;
} ) ;
}
/// @copydoc to_string()
operator std : : string ( ) const
{
return to_string ( ) ;
}
private :
/*!
@ brief remove and return last reference pointer
@ throw out_of_range .405 if JSON pointer has no parent
*/
std : : string pop_back ( )
{
if ( is_root ( ) )
{
JSON_THROW ( out_of_range : : create ( 405 , " JSON pointer has no parent " ) ) ;
}
auto last = reference_tokens . back ( ) ;
reference_tokens . pop_back ( ) ;
return last ;
}
/// return whether pointer points to the root document
bool is_root ( ) const
{
return reference_tokens . empty ( ) ;
}
json_pointer top ( ) const
{
if ( is_root ( ) )
{
JSON_THROW ( out_of_range : : create ( 405 , " JSON pointer has no parent " ) ) ;
}
json_pointer result = * this ;
result . reference_tokens = { reference_tokens [ 0 ] } ;
return result ;
}
/*!
@ brief create and return a reference to the pointed to value
@ complexity Linear in the number of reference tokens .
@ throw parse_error .109 if array index is not a number
@ throw type_error .313 if value cannot be unflattened
*/
reference get_and_create ( reference j ) const
{
pointer result = & j ;
// in case no reference tokens exist, return a reference to the
// JSON value j which will be overwritten by a primitive value
for ( const auto & reference_token : reference_tokens )
{
switch ( result - > m_type )
{
case value_t : : null :
{
if ( reference_token = = " 0 " )
{
// start a new array if reference token is 0
result = & result - > operator [ ] ( 0 ) ;
}
else
{
// start a new object otherwise
result = & result - > operator [ ] ( reference_token ) ;
}
break ;
}
case value_t : : object :
{
// create an entry in the object
result = & result - > operator [ ] ( reference_token ) ;
break ;
}
case value_t : : array :
{
// create an entry in the array
JSON_TRY
{
result = & result - > operator [ ] ( static_cast < size_type > ( std : : stoi ( reference_token ) ) ) ;
}
JSON_CATCH ( std : : invalid_argument & )
{
JSON_THROW ( parse_error : : create ( 109 , 0 , " array index ' " + reference_token + " ' is not a number " ) ) ;
}
break ;
}
/*
The following code is only reached if there exists a
reference token _and_ the current value is primitive . In
this case , we have an error situation , because primitive
values may only occur as single value ; that is , with an
empty list of reference tokens .
*/
default :
{
JSON_THROW ( type_error : : create ( 313 , " invalid value to unflatten " ) ) ;
}
}
}
return * result ;
}
/*!
@ brief return a reference to the pointed to value
@ note This version does not throw if a value is not present , but tries
to create nested values instead . For instance , calling this function
with pointer ` " /this/that " ` on a null value is equivalent to calling
` operator [ ] ( " this " ) . operator [ ] ( " that " ) ` on that value , effectively
changing the null value to an object .
@ param [ in ] ptr a JSON value
@ return reference to the JSON value pointed to by the JSON pointer
@ complexity Linear in the length of the JSON pointer .
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .404 if the JSON pointer can not be resolved
*/
reference get_unchecked ( pointer ptr ) const
{
for ( const auto & reference_token : reference_tokens )
{
// convert null values to arrays or objects before continuing
if ( ptr - > m_type = = value_t : : null )
{
// check if reference token is a number
const bool nums = std : : all_of ( reference_token . begin ( ) ,
reference_token . end ( ) ,
[ ] ( const char x )
{
return ( x > = ' 0 ' and x < = ' 9 ' ) ;
} ) ;
// change value to array for numbers or "-" or to object
// otherwise
if ( nums or reference_token = = " - " )
{
* ptr = value_t : : array ;
}
else
{
* ptr = value_t : : object ;
}
}
switch ( ptr - > m_type )
{
case value_t : : object :
{
// use unchecked object access
ptr = & ptr - > operator [ ] ( reference_token ) ;
break ;
}
case value_t : : array :
{
// error condition (cf. RFC 6901, Sect. 4)
if ( reference_token . size ( ) > 1 and reference_token [ 0 ] = = ' 0 ' )
{
JSON_THROW ( parse_error : : create ( 106 , 0 , " array index ' " + reference_token + " ' must not begin with '0' " ) ) ;
}
if ( reference_token = = " - " )
{
// explicitly treat "-" as index beyond the end
ptr = & ptr - > operator [ ] ( ptr - > m_value . array - > size ( ) ) ;
}
else
{
// convert array index to number; unchecked access
JSON_TRY
{
ptr = & ptr - > operator [ ] ( static_cast < size_type > ( std : : stoi ( reference_token ) ) ) ;
}
JSON_CATCH ( std : : invalid_argument & )
{
JSON_THROW ( parse_error : : create ( 109 , 0 , " array index ' " + reference_token + " ' is not a number " ) ) ;
}
}
break ;
}
default :
{
JSON_THROW ( out_of_range : : create ( 404 , " unresolved reference token ' " + reference_token + " ' " ) ) ;
}
}
}
return * ptr ;
}
/*!
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .402 if the array index ' - ' is used
@ throw out_of_range .404 if the JSON pointer can not be resolved
*/
reference get_checked ( pointer ptr ) const
{
for ( const auto & reference_token : reference_tokens )
{
switch ( ptr - > m_type )
{
case value_t : : object :
{
// note: at performs range check
ptr = & ptr - > at ( reference_token ) ;
break ;
}
case value_t : : array :
{
if ( reference_token = = " - " )
{
// "-" always fails the range check
JSON_THROW ( out_of_range : : create ( 402 , " array index '-' ( " +
std : : to_string ( ptr - > m_value . array - > size ( ) ) +
" ) is out of range " ) ) ;
}
// error condition (cf. RFC 6901, Sect. 4)
if ( reference_token . size ( ) > 1 and reference_token [ 0 ] = = ' 0 ' )
{
JSON_THROW ( parse_error : : create ( 106 , 0 , " array index ' " + reference_token + " ' must not begin with '0' " ) ) ;
}
// note: at performs range check
JSON_TRY
{
ptr = & ptr - > at ( static_cast < size_type > ( std : : stoi ( reference_token ) ) ) ;
}
JSON_CATCH ( std : : invalid_argument & )
{
JSON_THROW ( parse_error : : create ( 109 , 0 , " array index ' " + reference_token + " ' is not a number " ) ) ;
}
break ;
}
default :
{
JSON_THROW ( out_of_range : : create ( 404 , " unresolved reference token ' " + reference_token + " ' " ) ) ;
}
}
}
return * ptr ;
}
/*!
@ brief return a const reference to the pointed to value
@ param [ in ] ptr a JSON value
@ return const reference to the JSON value pointed to by the JSON
pointer
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .402 if the array index ' - ' is used
@ throw out_of_range .404 if the JSON pointer can not be resolved
*/
const_reference get_unchecked ( const_pointer ptr ) const
{
for ( const auto & reference_token : reference_tokens )
{
switch ( ptr - > m_type )
{
case value_t : : object :
{
// use unchecked object access
ptr = & ptr - > operator [ ] ( reference_token ) ;
break ;
}
case value_t : : array :
{
if ( reference_token = = " - " )
{
// "-" cannot be used for const access
JSON_THROW ( out_of_range : : create ( 402 , " array index '-' ( " +
std : : to_string ( ptr - > m_value . array - > size ( ) ) +
" ) is out of range " ) ) ;
}
// error condition (cf. RFC 6901, Sect. 4)
if ( reference_token . size ( ) > 1 and reference_token [ 0 ] = = ' 0 ' )
{
JSON_THROW ( parse_error : : create ( 106 , 0 , " array index ' " + reference_token + " ' must not begin with '0' " ) ) ;
}
// use unchecked array access
JSON_TRY
{
ptr = & ptr - > operator [ ] ( static_cast < size_type > ( std : : stoi ( reference_token ) ) ) ;
}
JSON_CATCH ( std : : invalid_argument & )
{
JSON_THROW ( parse_error : : create ( 109 , 0 , " array index ' " + reference_token + " ' is not a number " ) ) ;
}
break ;
}
default :
{
JSON_THROW ( out_of_range : : create ( 404 , " unresolved reference token ' " + reference_token + " ' " ) ) ;
}
}
}
return * ptr ;
}
/*!
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .402 if the array index ' - ' is used
@ throw out_of_range .404 if the JSON pointer can not be resolved
*/
const_reference get_checked ( const_pointer ptr ) const
{
for ( const auto & reference_token : reference_tokens )
{
switch ( ptr - > m_type )
{
case value_t : : object :
{
// note: at performs range check
ptr = & ptr - > at ( reference_token ) ;
break ;
}
case value_t : : array :
{
if ( reference_token = = " - " )
{
// "-" always fails the range check
JSON_THROW ( out_of_range : : create ( 402 , " array index '-' ( " +
std : : to_string ( ptr - > m_value . array - > size ( ) ) +
" ) is out of range " ) ) ;
}
// error condition (cf. RFC 6901, Sect. 4)
if ( reference_token . size ( ) > 1 and reference_token [ 0 ] = = ' 0 ' )
{
JSON_THROW ( parse_error : : create ( 106 , 0 , " array index ' " + reference_token + " ' must not begin with '0' " ) ) ;
}
// note: at performs range check
JSON_TRY
{
ptr = & ptr - > at ( static_cast < size_type > ( std : : stoi ( reference_token ) ) ) ;
}
JSON_CATCH ( std : : invalid_argument & )
{
JSON_THROW ( parse_error : : create ( 109 , 0 , " array index ' " + reference_token + " ' is not a number " ) ) ;
}
break ;
}
default :
{
JSON_THROW ( out_of_range : : create ( 404 , " unresolved reference token ' " + reference_token + " ' " ) ) ;
}
}
}
return * ptr ;
}
/*!
@ brief split the string input to reference tokens
@ note This function is only called by the json_pointer constructor .
All exceptions below are documented there .
@ throw parse_error .107 if the pointer is not empty or begins with ' / '
@ throw parse_error .108 if character ' ~ ' is not followed by ' 0 ' or ' 1 '
*/
static std : : vector < std : : string > split ( const std : : string & reference_string )
{
std : : vector < std : : string > result ;
// special case: empty reference string -> no reference tokens
if ( reference_string . empty ( ) )
{
return result ;
}
// check if nonempty reference string begins with slash
if ( reference_string [ 0 ] ! = ' / ' )
{
JSON_THROW ( parse_error : : create ( 107 , 1 , " JSON pointer must be empty or begin with '/' - was: ' " + reference_string + " ' " ) ) ;
}
// extract the reference tokens:
// - slash: position of the last read slash (or end of string)
// - start: position after the previous slash
for (
// search for the first slash after the first character
size_t slash = reference_string . find_first_of ( ' / ' , 1 ) ,
// set the beginning of the first reference token
start = 1 ;
// we can stop if start == string::npos+1 = 0
start ! = 0 ;
// set the beginning of the next reference token
// (will eventually be 0 if slash == std::string::npos)
start = slash + 1 ,
// find next slash
slash = reference_string . find_first_of ( ' / ' , start ) )
{
// use the text between the beginning of the reference token
// (start) and the last slash (slash).
auto reference_token = reference_string . substr ( start , slash - start ) ;
// check reference tokens are properly escaped
for ( size_t pos = reference_token . find_first_of ( ' ~ ' ) ;
pos ! = std : : string : : npos ;
pos = reference_token . find_first_of ( ' ~ ' , pos + 1 ) )
{
assert ( reference_token [ pos ] = = ' ~ ' ) ;
// ~ must be followed by 0 or 1
if ( pos = = reference_token . size ( ) - 1 or
( reference_token [ pos + 1 ] ! = ' 0 ' and
reference_token [ pos + 1 ] ! = ' 1 ' ) )
{
JSON_THROW ( parse_error : : create ( 108 , 0 , " escape character '~' must be followed with '0' or '1' " ) ) ;
}
}
// finally, store the reference token
unescape ( reference_token ) ;
result . push_back ( reference_token ) ;
}
return result ;
}
/*!
@ brief replace all occurrences of a substring by another string
@ param [ in , out ] s the string to manipulate ; changed so that all
occurrences of @ a f are replaced with @ a t
@ param [ in ] f the substring to replace with @ a t
@ param [ in ] t the string to replace @ a f
@ pre The search string @ a f must not be empty . * * This precondition is
enforced with an assertion . * *
@ since version 2.0 .0
*/
static void replace_substring ( std : : string & s ,
const std : : string & f ,
const std : : string & t )
{
assert ( not f . empty ( ) ) ;
for (
size_t pos = s . find ( f ) ; // find first occurrence of f
pos ! = std : : string : : npos ; // make sure f was found
s . replace ( pos , f . size ( ) , t ) , // replace with t
pos = s . find ( f , pos + t . size ( ) ) // find next occurrence of f
) ;
}
/// escape tilde and slash
static std : : string escape ( std : : string s )
{
// escape "~"" to "~0" and "/" to "~1"
replace_substring ( s , " ~ " , " ~0 " ) ;
replace_substring ( s , " / " , " ~1 " ) ;
return s ;
}
/// unescape tilde and slash
static void unescape ( std : : string & s )
{
// first transform any occurrence of the sequence '~1' to '/'
replace_substring ( s , " ~1 " , " / " ) ;
// then transform any occurrence of the sequence '~0' to '~'
replace_substring ( s , " ~0 " , " ~ " ) ;
}
/*!
@ param [ in ] reference_string the reference string to the current value
@ param [ in ] value the value to consider
@ param [ in , out ] result the result object to insert values to
@ note Empty objects or arrays are flattened to ` null ` .
*/
static void flatten ( const std : : string & reference_string ,
const basic_json & value ,
basic_json & result )
{
switch ( value . m_type )
{
case value_t : : array :
{
if ( value . m_value . array - > empty ( ) )
{
// flatten empty array as null
result [ reference_string ] = nullptr ;
}
else
{
// iterate array and use index as reference string
for ( size_t i = 0 ; i < value . m_value . array - > size ( ) ; + + i )
{
flatten ( reference_string + " / " + std : : to_string ( i ) ,
value . m_value . array - > operator [ ] ( i ) , result ) ;
}
}
break ;
}
case value_t : : object :
{
if ( value . m_value . object - > empty ( ) )
{
// flatten empty object as null
result [ reference_string ] = nullptr ;
}
else
{
// iterate object and use keys as reference string
for ( const auto & element : * value . m_value . object )
{
flatten ( reference_string + " / " + escape ( element . first ) ,
element . second , result ) ;
}
}
break ;
}
default :
{
// add primitive value with its reference string
result [ reference_string ] = value ;
break ;
}
}
}
/*!
@ param [ in ] value flattened JSON
@ return unflattened JSON
@ throw parse_error .109 if array index is not a number
@ throw type_error .314 if value is not an object
@ throw type_error .315 if object values are not primitive
@ throw type_error .313 if value cannot be unflattened
*/
static basic_json unflatten ( const basic_json & value )
{
if ( not value . is_object ( ) )
{
JSON_THROW ( type_error : : create ( 314 , " only objects can be unflattened " ) ) ;
}
basic_json result ;
// iterate the JSON object values
for ( const auto & element : * value . m_value . object )
{
if ( not element . second . is_primitive ( ) )
{
JSON_THROW ( type_error : : create ( 315 , " values in object must be primitive " ) ) ;
}
// assign value to reference pointed to by JSON pointer; Note
// that if the JSON pointer is "" (i.e., points to the whole
// value), function get_and_create returns a reference to
// result itself. An assignment will then create a primitive
// value.
json_pointer ( element . first ) . get_and_create ( result ) = element . second ;
}
return result ;
}
friend bool operator = = ( json_pointer const & lhs ,
json_pointer const & rhs ) noexcept
{
return lhs . reference_tokens = = rhs . reference_tokens ;
}
friend bool operator ! = ( json_pointer const & lhs ,
json_pointer const & rhs ) noexcept
{
return ! ( lhs = = rhs ) ;
}
/// the reference tokens
std : : vector < std : : string > reference_tokens { } ;
} ;
//////////////////////////
// JSON Pointer support //
//////////////////////////
/// @name JSON Pointer functions
/// @{
/*!
@ brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value .
No bound checking is performed . Similar to @ ref operator [ ] ( const typename
object_t : : key_type & ) , ` null ` values are created in arrays and objects if
necessary .
In particular :
- If the JSON pointer points to an object key that does not exist , it
is created an filled with a ` null ` value before a reference to it
is returned .
- If the JSON pointer points to an array index that does not exist , it
is created an filled with a ` null ` value before a reference to it
is returned . All indices between the current maximum and the given
index are also filled with ` null ` .
- The special value ` - ` is treated as a synonym for the index past the
end .
@ param [ in ] ptr a JSON pointer
@ return reference to the element pointed to by @ a ptr
@ complexity Constant .
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .404 if the JSON pointer can not be resolved
@ liveexample { The behavior is shown in the example . , operatorjson_pointer }
@ since version 2.0 .0
*/
reference operator [ ] ( const json_pointer & ptr )
{
return ptr . get_unchecked ( this ) ;
}
/*!
@ brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value .
No bound checking is performed . The function does not change the JSON
value ; no ` null ` values are created . In particular , the the special value
` - ` yields an exception .
@ param [ in ] ptr JSON pointer to the desired element
@ return const reference to the element pointed to by @ a ptr
@ complexity Constant .
@ throw parse_error .106 if an array index begins with ' 0 '
@ throw parse_error .109 if an array index was not a number
@ throw out_of_range .402 if the array index ' - ' is used
@ throw out_of_range .404 if the JSON pointer can not be resolved
@ liveexample { The behavior is shown in the example . , operatorjson_pointer_const }
@ since version 2.0 .0
*/
const_reference operator [ ] ( const json_pointer & ptr ) const
{
return ptr . get_unchecked ( this ) ;
}
/*!
@ brief access specified element via JSON Pointer
Returns a reference to the element at with specified JSON pointer @ a ptr ,
with bounds checking .
@ param [ in ] ptr JSON pointer to the desired element
@ return reference to the element pointed to by @ a ptr
@ throw parse_error .106 if an array index in the passed JSON pointer @ a ptr
begins with ' 0 ' . See example below .
@ throw parse_error .109 if an array index in the passed JSON pointer @ a ptr
is not a number . See example below .
@ throw out_of_range .401 if an array index in the passed JSON pointer @ a ptr
is out of range . See example below .
@ throw out_of_range .402 if the array index ' - ' is used in the passed JSON
pointer @ a ptr . As ` at ` provides checked access ( and no elements are
implicitly inserted ) , the index ' - ' is always invalid . See example below .
@ throw out_of_range .404 if the JSON pointer @ a ptr can not be resolved .
See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Constant .
@ since version 2.0 .0
@ liveexample { The behavior is shown in the example . , at_json_pointer }
*/
reference at ( const json_pointer & ptr )
{
return ptr . get_checked ( this ) ;
}
/*!
@ brief access specified element via JSON Pointer
Returns a const reference to the element at with specified JSON pointer @ a
ptr , with bounds checking .
@ param [ in ] ptr JSON pointer to the desired element
@ return reference to the element pointed to by @ a ptr
@ throw parse_error .106 if an array index in the passed JSON pointer @ a ptr
begins with ' 0 ' . See example below .
@ throw parse_error .109 if an array index in the passed JSON pointer @ a ptr
is not a number . See example below .
@ throw out_of_range .401 if an array index in the passed JSON pointer @ a ptr
is out of range . See example below .
@ throw out_of_range .402 if the array index ' - ' is used in the passed JSON
pointer @ a ptr . As ` at ` provides checked access ( and no elements are
implicitly inserted ) , the index ' - ' is always invalid . See example below .
@ throw out_of_range .404 if the JSON pointer @ a ptr can not be resolved .
See example below .
@ exceptionsafety Strong guarantee : if an exception is thrown , there are no
changes in the JSON value .
@ complexity Constant .
@ since version 2.0 .0
@ liveexample { The behavior is shown in the example . , at_json_pointer_const }
*/
const_reference at ( const json_pointer & ptr ) const
{
return ptr . get_checked ( this ) ;
}
/*!
@ brief return flattened JSON value
The function creates a JSON object whose keys are JSON pointers ( see [ RFC
6901 ] ( https : //tools.ietf.org/html/rfc6901)) and whose values are all
primitive . The original JSON value can be restored using the @ ref
unflatten ( ) function .
@ return an object that maps JSON pointers to primitive values
@ note Empty objects and arrays are flattened to ` null ` and will not be
reconstructed correctly by the @ ref unflatten ( ) function .
@ complexity Linear in the size the JSON value .
@ liveexample { The following code shows how a JSON object is flattened to an
object whose keys consist of JSON pointers . , flatten }
@ sa @ ref unflatten ( ) for the reverse function
@ since version 2.0 .0
*/
basic_json flatten ( ) const
{
basic_json result ( value_t : : object ) ;
json_pointer : : flatten ( " " , * this , result ) ;
return result ;
}
/*!
@ brief unflatten a previously flattened JSON value
The function restores the arbitrary nesting of a JSON value that has been
flattened before using the @ ref flatten ( ) function . The JSON value must
meet certain constraints :
1. The value must be an object .
2. The keys must be JSON pointers ( see
[ RFC 6901 ] ( https : //tools.ietf.org/html/rfc6901))
3. The mapped values must be primitive JSON types .
@ return the original JSON from a flattened version
@ note Empty objects and arrays are flattened by @ ref flatten ( ) to ` null `
values and can not unflattened to their original type . Apart from
this example , for a JSON value ` j ` , the following is always true :
` j = = j . flatten ( ) . unflatten ( ) ` .
@ complexity Linear in the size the JSON value .
@ throw type_error .314 if value is not an object
@ throw type_error .315 if object values are not primitve
@ liveexample { The following code shows how a flattened JSON object is
unflattened into the original nested JSON object . , unflatten }
@ sa @ ref flatten ( ) for the reverse function
@ since version 2.0 .0
*/
basic_json unflatten ( ) const
{
return json_pointer : : unflatten ( * this ) ;
}
/// @}
//////////////////////////
// JSON Patch functions //
//////////////////////////
/// @name JSON Patch functions
/// @{
/*!
@ brief applies a JSON patch
[ JSON Patch ] ( http : //jsonpatch.com) defines a JSON document structure for
expressing a sequence of operations to apply to a JSON ) document . With
this function , a JSON Patch is applied to the current JSON value by
executing all operations from the patch .
@ param [ in ] json_patch JSON patch document
@ return patched document
@ note The application of a patch is atomic : Either all operations succeed
and the patched document is returned or an exception is thrown . In
any case , the original value is not changed : the patch is applied
to a copy of the value .
@ throw parse_error .104 if the JSON patch does not consist of an array of
objects
@ throw parse_error .105 if the JSON patch is malformed ( e . g . , mandatory
attributes are missing ) ; example : ` " operation add must have member path " `
@ throw out_of_range .401 if an array index is out of range .
@ throw out_of_range .403 if a JSON pointer inside the patch could not be
resolved successfully in the current JSON value ; example : ` " key baz not
found " `
@ throw out_of_range .405 if JSON pointer has no parent ( " add " , " remove " ,
" move " )
@ throw other_error .501 if " test " operation was unsuccessful
@ complexity Linear in the size of the JSON value and the length of the
JSON patch . As usually only a fraction of the JSON value is affected by
the patch , the complexity can usually be neglected .
@ liveexample { The following code shows how a JSON patch is applied to a
value . , patch }
@ sa @ ref diff - - create a JSON patch by comparing two JSON values
@ sa [ RFC 6902 ( JSON Patch ) ] ( https : //tools.ietf.org/html/rfc6902)
@ sa [ RFC 6901 ( JSON Pointer ) ] ( https : //tools.ietf.org/html/rfc6901)
@ since version 2.0 .0
*/
basic_json patch ( const basic_json & json_patch ) const
{
// make a working copy to apply the patch to
basic_json result = * this ;
// the valid JSON Patch operations
enum class patch_operations { add , remove , replace , move , copy , test , invalid } ;
const auto get_op = [ ] ( const std : : string & op )
{
if ( op = = " add " )
{
return patch_operations : : add ;
}
if ( op = = " remove " )
{
return patch_operations : : remove ;
}
if ( op = = " replace " )
{
return patch_operations : : replace ;
}
if ( op = = " move " )
{
return patch_operations : : move ;
}
if ( op = = " copy " )
{
return patch_operations : : copy ;
}
if ( op = = " test " )
{
return patch_operations : : test ;
}
return patch_operations : : invalid ;
} ;
// wrapper for "add" operation; add value at ptr
const auto operation_add = [ & result ] ( json_pointer & ptr , basic_json val )
{
// adding to the root of the target document means replacing it
if ( ptr . is_root ( ) )
{
result = val ;
}
else
{
// make sure the top element of the pointer exists
json_pointer top_pointer = ptr . top ( ) ;
if ( top_pointer ! = ptr )
{
result . at ( top_pointer ) ;
}
// get reference to parent of JSON pointer ptr
const auto last_path = ptr . pop_back ( ) ;
basic_json & parent = result [ ptr ] ;
switch ( parent . m_type )
{
case value_t : : null :
case value_t : : object :
{
// use operator[] to add value
parent [ last_path ] = val ;
break ;
}
case value_t : : array :
{
if ( last_path = = " - " )
{
// special case: append to back
parent . push_back ( val ) ;
}
else
{
const auto idx = std : : stoi ( last_path ) ;
if ( static_cast < size_type > ( idx ) > parent . size ( ) )
{
// avoid undefined behavior
JSON_THROW ( out_of_range : : create ( 401 , " array index " + std : : to_string ( idx ) + " is out of range " ) ) ;
}
else
{
// default case: insert add offset
parent . insert ( parent . begin ( ) + static_cast < difference_type > ( idx ) , val ) ;
}
}
break ;
}
default :
{
// if there exists a parent it cannot be primitive
assert ( false ) ; // LCOV_EXCL_LINE
}
}
}
} ;
// wrapper for "remove" operation; remove value at ptr
const auto operation_remove = [ & result ] ( json_pointer & ptr )
{
// get reference to parent of JSON pointer ptr
const auto last_path = ptr . pop_back ( ) ;
basic_json & parent = result . at ( ptr ) ;
// remove child
if ( parent . is_object ( ) )
{
// perform range check
auto it = parent . find ( last_path ) ;
if ( it ! = parent . end ( ) )
{
parent . erase ( it ) ;
}
else
{
JSON_THROW ( out_of_range : : create ( 403 , " key ' " + last_path + " ' not found " ) ) ;
}
}
else if ( parent . is_array ( ) )
{
// note erase performs range check
parent . erase ( static_cast < size_type > ( std : : stoi ( last_path ) ) ) ;
}
} ;
// type check: top level value must be an array
if ( not json_patch . is_array ( ) )
{
JSON_THROW ( parse_error : : create ( 104 , 0 , " JSON patch must be an array of objects " ) ) ;
}
// iterate and apply the operations
for ( const auto & val : json_patch )
{
// wrapper to get a value for an operation
const auto get_value = [ & val ] ( const std : : string & op ,
const std : : string & member ,
bool string_type ) - > basic_json &
{
// find value
auto it = val . m_value . object - > find ( member ) ;
// context-sensitive error message
const auto error_msg = ( op = = " op " ) ? " operation " : " operation ' " + op + " ' " ;
// check if desired value is present
if ( it = = val . m_value . object - > end ( ) )
{
JSON_THROW ( parse_error : : create ( 105 , 0 , error_msg + " must have member ' " + member + " ' " ) ) ;
}
// check if result is of type string
if ( string_type and not it - > second . is_string ( ) )
{
JSON_THROW ( parse_error : : create ( 105 , 0 , error_msg + " must have string member ' " + member + " ' " ) ) ;
}
// no error: return value
return it - > second ;
} ;
// type check: every element of the array must be an object
if ( not val . is_object ( ) )
{
JSON_THROW ( parse_error : : create ( 104 , 0 , " JSON patch must be an array of objects " ) ) ;
}
// collect mandatory members
const std : : string op = get_value ( " op " , " op " , true ) ;
const std : : string path = get_value ( op , " path " , true ) ;
json_pointer ptr ( path ) ;
switch ( get_op ( op ) )
{
case patch_operations : : add :
{
operation_add ( ptr , get_value ( " add " , " value " , false ) ) ;
break ;
}
case patch_operations : : remove :
{
operation_remove ( ptr ) ;
break ;
}
case patch_operations : : replace :
{
// the "path" location must exist - use at()
result . at ( ptr ) = get_value ( " replace " , " value " , false ) ;
break ;
}
case patch_operations : : move :
{
const std : : string from_path = get_value ( " move " , " from " , true ) ;
json_pointer from_ptr ( from_path ) ;
// the "from" location must exist - use at()
basic_json v = result . at ( from_ptr ) ;
// The move operation is functionally identical to a
// "remove" operation on the "from" location, followed
// immediately by an "add" operation at the target
// location with the value that was just removed.
operation_remove ( from_ptr ) ;
operation_add ( ptr , v ) ;
break ;
}
case patch_operations : : copy :
{
const std : : string from_path = get_value ( " copy " , " from " , true ) ; ;
const json_pointer from_ptr ( from_path ) ;
// the "from" location must exist - use at()
result [ ptr ] = result . at ( from_ptr ) ;
break ;
}
case patch_operations : : test :
{
bool success = false ;
JSON_TRY
{
// check if "value" matches the one at "path"
// the "path" location must exist - use at()
success = ( result . at ( ptr ) = = get_value ( " test " , " value " , false ) ) ;
}
JSON_CATCH ( out_of_range & )
{
// ignore out of range errors: success remains false
}
// throw an exception if test fails
if ( not success )
{
JSON_THROW ( other_error : : create ( 501 , " unsuccessful: " + val . dump ( ) ) ) ;
}
break ;
}
case patch_operations : : invalid :
{
// op must be "add", "remove", "replace", "move", "copy", or
// "test"
JSON_THROW ( parse_error : : create ( 105 , 0 , " operation value ' " + op + " ' is invalid " ) ) ;
}
}
}
return result ;
}
/*!
@ brief creates a diff as a JSON patch
Creates a [ JSON Patch ] ( http : //jsonpatch.com) so that value @a source can
be changed into the value @ a target by calling @ ref patch function .
@ invariant For two JSON values @ a source and @ a target , the following code
yields always ` true ` :
@ code { . cpp }
source . patch ( diff ( source , target ) ) = = target ;
@ endcode
@ note Currently , only ` remove ` , ` add ` , and ` replace ` operations are
generated .
@ param [ in ] source JSON value to compare from
@ param [ in ] target JSON value to compare against
@ param [ in ] path helper value to create JSON pointers
@ return a JSON patch to convert the @ a source to @ a target
@ complexity Linear in the lengths of @ a source and @ a target .
@ liveexample { The following code shows how a JSON patch is created as a
diff for two JSON values . , diff }
@ sa @ ref patch - - apply a JSON patch
@ sa [ RFC 6902 ( JSON Patch ) ] ( https : //tools.ietf.org/html/rfc6902)
@ since version 2.0 .0
*/
static basic_json diff ( const basic_json & source ,
const basic_json & target ,
const std : : string & path = " " )
{
// the patch
basic_json result ( value_t : : array ) ;
// if the values are the same, return empty patch
if ( source = = target )
{
return result ;
}
if ( source . type ( ) ! = target . type ( ) )
{
// different types: replace value
result . push_back (
{
{ " op " , " replace " } ,
{ " path " , path } ,
{ " value " , target }
} ) ;
}
else
{
switch ( source . type ( ) )
{
case value_t : : array :
{
// first pass: traverse common elements
size_t i = 0 ;
while ( i < source . size ( ) and i < target . size ( ) )
{
// recursive call to compare array values at index i
auto temp_diff = diff ( source [ i ] , target [ i ] , path + " / " + std : : to_string ( i ) ) ;
result . insert ( result . end ( ) , temp_diff . begin ( ) , temp_diff . end ( ) ) ;
+ + i ;
}
// i now reached the end of at least one array
// in a second pass, traverse the remaining elements
// remove my remaining elements
const auto end_index = static_cast < difference_type > ( result . size ( ) ) ;
while ( i < source . size ( ) )
{
// add operations in reverse order to avoid invalid
// indices
result . insert ( result . begin ( ) + end_index , object (
{
{ " op " , " remove " } ,
{ " path " , path + " / " + std : : to_string ( i ) }
} ) ) ;
+ + i ;
}
// add other remaining elements
while ( i < target . size ( ) )
{
result . push_back (
{
{ " op " , " add " } ,
{ " path " , path + " / " + std : : to_string ( i ) } ,
{ " value " , target [ i ] }
} ) ;
+ + i ;
}
break ;
}
case value_t : : object :
{
// first pass: traverse this object's elements
for ( auto it = source . begin ( ) ; it ! = source . end ( ) ; + + it )
{
// escape the key name to be used in a JSON patch
const auto key = json_pointer : : escape ( it . key ( ) ) ;
if ( target . find ( it . key ( ) ) ! = target . end ( ) )
{
// recursive call to compare object values at key it
auto temp_diff = diff ( it . value ( ) , target [ it . key ( ) ] , path + " / " + key ) ;
result . insert ( result . end ( ) , temp_diff . begin ( ) , temp_diff . end ( ) ) ;
}
else
{
// found a key that is not in o -> remove it
result . push_back ( object (
{
{ " op " , " remove " } ,
{ " path " , path + " / " + key }
} ) ) ;
}
}
// second pass: traverse other object's elements
for ( auto it = target . begin ( ) ; it ! = target . end ( ) ; + + it )
{
if ( source . find ( it . key ( ) ) = = source . end ( ) )
{
// found a key that is not in this -> add it
const auto key = json_pointer : : escape ( it . key ( ) ) ;
result . push_back (
{
{ " op " , " add " } ,
{ " path " , path + " / " + key } ,
{ " value " , it . value ( ) }
} ) ;
}
}
break ;
}
default :
{
// both primitive type: replace value
result . push_back (
{
{ " op " , " replace " } ,
{ " path " , path } ,
{ " value " , target }
} ) ;
break ;
}
}
}
return result ;
}
/// @}
} ;
/////////////
// presets //
/////////////
/*!
@ brief default JSON class
This type is the default specialization of the @ ref basic_json class which
uses the standard template types .
@ since version 1.0 .0
*/
using json = basic_json < > ;
} // namespace nlohmann
///////////////////////
// nonmember support //
///////////////////////
// specialization of std::swap, and std::hash
namespace std
{
/*!
@ brief exchanges the values of two JSON objects
@ since version 1.0 .0
*/
template < >
inline void swap ( nlohmann : : json & j1 ,
nlohmann : : json & j2 ) noexcept (
is_nothrow_move_constructible < nlohmann : : json > : : value and
is_nothrow_move_assignable < nlohmann : : json > : : value
)
{
j1 . swap ( j2 ) ;
}
/// hash value for JSON objects
template < >
struct hash < nlohmann : : json >
{
/*!
@ brief return a hash value for a JSON object
@ since version 1.0 .0
*/
std : : size_t operator ( ) ( const nlohmann : : json & j ) const
{
// a naive hashing via the string representation
const auto & h = hash < nlohmann : : json : : string_t > ( ) ;
return h ( j . dump ( ) ) ;
}
} ;
/// specialization for std::less<value_t>
template < >
struct less < : : nlohmann : : detail : : value_t >
{
/*!
@ brief compare two value_t enum values
@ since version 3.0 .0
*/
bool operator ( ) ( nlohmann : : detail : : value_t lhs ,
nlohmann : : detail : : value_t rhs ) const noexcept
{
return nlohmann : : detail : : operator < ( lhs , rhs ) ;
}
} ;
} // namespace std
/*!
@ brief user - defined string literal for JSON values
This operator implements a user - defined string literal for JSON objects . It
can be used by adding ` " _json " ` to a string literal and returns a JSON object
if no parse error occurred .
@ param [ in ] s a string representation of a JSON object
@ param [ in ] n the length of string @ a s
@ return a JSON object
@ since version 1.0 .0
*/
inline nlohmann : : json operator " " _json ( const char * s , std : : size_t n )
{
return nlohmann : : json : : parse ( s , s + n ) ;
}
/*!
@ brief user - defined string literal for JSON pointer
This operator implements a user - defined string literal for JSON Pointers . It
can be used by adding ` " _json_pointer " ` to a string literal and returns a JSON pointer
object if no parse error occurred .
@ param [ in ] s a string representation of a JSON Pointer
@ param [ in ] n the length of string @ a s
@ return a JSON pointer object
@ since version 2.0 .0
*/
inline nlohmann : : json : : json_pointer operator " " _json_pointer ( const char * s , std : : size_t n )
{
return nlohmann : : json : : json_pointer ( std : : string ( s , n ) ) ;
}
// restore GCC/clang diagnostic settings
# if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
# pragma GCC diagnostic pop
# endif
# if defined(__clang__)
# pragma GCC diagnostic pop
# endif
// clean up
# undef JSON_CATCH
# undef JSON_THROW
# undef JSON_TRY
# undef JSON_LIKELY
# undef JSON_UNLIKELY
# undef JSON_DEPRECATED
# endif