// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (utils/structs/DoubleEndedQueue.sol) pragma solidity ^0.8.4; import "../math/SafeCast.sol"; /** * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that * the existing queue contents are left in storage. * * The struct is called `Bytes32Deque`. Other types can be cast to and from `bytes32`. This data structure can only be * used in storage, and not in memory. * ``` * DoubleEndedQueue.Bytes32Deque queue; * ``` * * _Available since v4.6._ */ library DoubleEndedQueue { /** * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty. */ error Empty(); /** * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds. */ error OutOfBounds(); /** * @dev Indices are signed integers because the queue can grow in any direction. They are 128 bits so begin and end * are packed in a single storage slot for efficient access. Since the items are added one at a time we can safely * assume that these 128-bit indices will not overflow, and use unchecked arithmetic. * * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and * lead to unexpected behavior. * * Indices are in the range [begin, end) which means the first item is at data[begin] and the last item is at * data[end - 1]. */ struct Bytes32Deque { int128 _begin; int128 _end; mapping(int128 => bytes32) _data; } /** * @dev Inserts an item at the end of the queue. */ function pushBack(Bytes32Deque storage deque, bytes32 value) internal { int128 backIndex = deque._end; deque._data[backIndex] = value; unchecked { deque._end = backIndex + 1; } } /** * @dev Removes the item at the end of the queue and returns it. * * Reverts with `Empty` if the queue is empty. */ function popBack(Bytes32Deque storage deque) internal returns (bytes32 value) { if (empty(deque)) revert Empty(); int128 backIndex; unchecked { backIndex = deque._end - 1; } value = deque._data[backIndex]; delete deque._data[backIndex]; deque._end = backIndex; } /** * @dev Inserts an item at the beginning of the queue. */ function pushFront(Bytes32Deque storage deque, bytes32 value) internal { int128 frontIndex; unchecked { frontIndex = deque._begin - 1; } deque._data[frontIndex] = value; deque._begin = frontIndex; } /** * @dev Removes the item at the beginning of the queue and returns it. * * Reverts with `Empty` if the queue is empty. */ function popFront(Bytes32Deque storage deque) internal returns (bytes32 value) { if (empty(deque)) revert Empty(); int128 frontIndex = deque._begin; value = deque._data[frontIndex]; delete deque._data[frontIndex]; unchecked { deque._begin = frontIndex + 1; } } /** * @dev Returns the item at the beginning of the queue. * * Reverts with `Empty` if the queue is empty. */ function front(Bytes32Deque storage deque) internal view returns (bytes32 value) { if (empty(deque)) revert Empty(); int128 frontIndex = deque._begin; return deque._data[frontIndex]; } /** * @dev Returns the item at the end of the queue. * * Reverts with `Empty` if the queue is empty. */ function back(Bytes32Deque storage deque) internal view returns (bytes32 value) { if (empty(deque)) revert Empty(); int128 backIndex; unchecked { backIndex = deque._end - 1; } return deque._data[backIndex]; } /** * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at * `length(deque) - 1`. * * Reverts with `OutOfBounds` if the index is out of bounds. */ function at(Bytes32Deque storage deque, uint256 index) internal view returns (bytes32 value) { // int256(deque._begin) is a safe upcast int128 idx = SafeCast.toInt128(int256(deque._begin) + SafeCast.toInt256(index)); if (idx >= deque._end) revert OutOfBounds(); return deque._data[idx]; } /** * @dev Resets the queue back to being empty. * * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses * out on potential gas refunds. */ function clear(Bytes32Deque storage deque) internal { deque._begin = 0; deque._end = 0; } /** * @dev Returns the number of items in the queue. */ function length(Bytes32Deque storage deque) internal view returns (uint256) { // The interface preserves the invariant that begin <= end so we assume this will not overflow. // We also assume there are at most int256.max items in the queue. unchecked { return uint256(int256(deque._end) - int256(deque._begin)); } } /** * @dev Returns true if the queue is empty. */ function empty(Bytes32Deque storage deque) internal view returns (bool) { return deque._end <= deque._begin; } }