
Formal Verification of OpenZeppelin

(March - April 2022)

Summary

This document describes the specification and verification of OpenZeppelin’s contracts

using the Certora Prover. The work was undertaken from March 2 to April 6, 2022. The

latest commit that was reviewed and ran through the Certora Prover was 4088540a .

The scope of this verification is OpenZeppelin’s governance system, particularly the

following contracts:

• ERC20Votes.sol

• ERC20FlashMint.sol

• ERC20Wrapper.sol

• TimelockController.sol

• draft-ERC721Votes.sol

• Votes.sol

• AccessControl.sol

• ERC1155.sol

The Certora Prover proved the implementation of the contracts above is correct with

respect to formal specifications written by the the Certora team. The team also performed

a manual audit of these contracts.

The formal specifications focus on validating correct behavior of OpenZeppelin’s contracts

as described by the OZ team and documentation. The rules verify valid states of a

system, proper transitions between states, the solvency of the system and method

specifications(unitTest-like rules).

The formal specifications have been submitted as a pull request against OpenZeppelin’s

public git repository.

Main Issues Discovered

https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/Certora/openzeppelin-contracts/commit/4088540aef299ea6d2b7f78a72d35af49eec2ff0
https://github.com/traderjoe-xyz/rocket-joe/pull/168
https://github.com/traderjoe-xyz/rocket-joe/pull/168
https://github.com/traderjoe-xyz/rocket-joe/pull/168

Severity: Medium

Issue: No check for 0 address [ERC1155]

Description:
from address can be the 0 address in safeTransferFrom and

safeBatchTransferFrom

Response: Will be implemented in the next version.

Severity: Medium

Issue: Anyone can call flashLoan for a receiver [ERC20FlashMint]

Description:

Anyone can call flashLoan for a receiver . An attacker can call

flashLoan repeatedly on a receiver and drain its funds as the

receiver contract has to pay back extra fee .

Response:
We’ve implemented EIP-3156. If a receiver pays a fee, they should

validate the initiator in onFlashLoan

Severity: Informational

Issue:
Votes.sol can only support token supply upto 2^224 - 1

[Checkpoints.sol push()]

Description:

Since Votes.sol uses Checkpoints.push , which casts the new

value to uint224 , it is only able to support token supply up till

type(uint224).max . If this is indeed the case, they should mention it

in the comments as they have done it for ERC20Votes.sol

Response:

Votes is an abstraction of the mechanisme that was first introduced in

ERC20Votes . Both are limited, by design, to uint224. We will improve

Votes documentation to more clearly reflect that limitation.

Severity: Informational

Issue: Extra unnecessary require [Votes.sol getPastTotalSupply()]

Description:
require(blockNumber < block.number) is checked twice when

calling getPastTotalSupply()

Response:

The redundant require in getPastTotalSupply was indeed missed.

The check should should indeed be removed from Votes.sol to save

gas

Severity: Informational

Issue: Checkpoint Overflow [ERC20Votes.sol, draft-ERC721Votes.sol]

Description:

Should the number of checkpoints go past 2^32 uint32 index used will

no longer function properly resulting in a loss of votes. However, since

the property that only one checkpoint per block number is held, this is

not believed to be an issue in a realistic time frame

Response:

The “key” art of the Checkpoints is uint32 that is currently used to

store block numbers. Having it overflow would be a real issue, but we

consider it very unlikelly to ever overflow, at list considering the current

chain design. Even if someone was to use block.timestamp based

checkpoint to circumvent the unpredictable nature of block number on

some L2s (which is a feature that our code doesn’t provide out of the

box), that overflow would happen in the year 2106.

Severity: Low

Issue:
Equal addresses of contract and msg.sender [ERC20Wrapper.sol

depositFor()/withdrawTo()]

Description:
Contract’s address(address(this)) can be equal to the msg.sender ,

thus, it’s posssible to deposit/withdraw without limits

Response:

The hability to mint ERC20Wrapper tokens without a counterpart, while

apparently not serious, has the ability to create a serious

inconsistency between the totalSupply and the amount of underlying

token. This could confuse external observer. Additionnaly, extensions

of the ERC20Wrapper might include functionnality that use these

additionals “unbacked” tokens. We will add a check to prevent this.

Disclaimer

The Certora Prover takes as input a contract and a specification and formally proves that

the contract satisfies the specification in all scenarios. Importantly, the guarantees of the

Certora Prover are scoped to the provided specification, and the Certora Prover does not

check any cases not covered by the specification.

We hope that this information is useful, but provide no warranty of any kind, explicit or

implied. The contents of this report should not be construed as a complete guarantee that

the contract is secure in all dimensions. In no event shall Certora or any of its employees

be liable for any claim, damages or other liability, whether in an action of contract, tort or

otherwise, arising from, out of or in connection with the results reported here.

Summary of formal verification

Notations

 indicates the rule is formally verified on the latest reviewed commit.

indicates the rule was violated under one of the tested versions of the code.

indicates the rule is not yet formally specified.

indicates that some functions cannot be verified because the rules timed out

Footnotes describe any simplifications or assumptions used while verifying the

rules (beyond the general assumptions listed above).

In this document, verification conditions are either shown as logical formulas

or Hoare triples of the form {p} C {q} . A verification condition given by a

logical formula denotes an invariant that holds if every reachable state

satisfies the condition.

Hoare triples of the form {p} C {q} hold if any non-reverting execution of

program C that starts in a state satsifying the precondition p ends in a

state satisfying the postcondition q . The notation {p} C@withrevert {q}

is similar but applies to both reverting and non-reverting executions.

Preconditions and postconditions are similar to the Solidity require and

assert statements.

The syntax {p} (C1 〜 C2) {q} is a generalization of Hoare rules, called relational

properties. {p} is a requirement on the states before C1 and C2, and {q} describes the

states after their executions. Notice that C1 and C2 result in different states.

Formulas relate the results of method calls. In most cases, these methods are

getters defined in the contracts, but in some cases they are getters we have

added to our harness or definitions provided in the rules file. Undefined

variables in the formulas are treated as arbitrary: the rule is checked for

every possible value of the variables.

Verification of ERC20FlashMint.sol

Summary

ERC20FlashMint is the extension of ERC20 to support flash loan operations.

Assumptions and simplifications for verification

• We unroll loops. Violations that require a loop to execute more than once will not be

detected.

Properties

() letsWatchItBurns

Check that if flashLoan() call is successful, then proper amount of tokens was

burnt(fee + flashLoan amount).

{

 feeBefore = flashFee(token, amount);

}

 flashLoan(receiver, token, amount, data)

{

 amount + feeBefore == amount of burnt tokens

}

Verification of ERC20Wrapper.sol

Summary

ERC20Wrapper is the extension of ERC20 to support token wrapping. Users can

exchange their “underlying tokens” to “wrapped tokens”.

Assumptions and simplifications for verification

• We unroll loops. Violations that require a loop to execute more than once will not be

detected.

Properties

() whatAboutTotal

The totalSupply of wrapped should be less than or equal to the totalSupply of

underlying (assuming no external transfer).

totalSupply() ≤ underlyingTotalSupply()

() underTotalAndContractBalanceOfCorrelation

The totalSupply of wrapper tokens is less than or equal to the underlying tokens

held by the wrapper contract.

totalSupply() ≤ underlyingBalanceOf(erc20wrapper)

() depositForSpecBasic

Check that values are updated correctly by depositFor() .

{

 msg.sender ≠ erc20wrapper

 ∧ underlyingContract ≠ erc20wrapper

 ∧ wrapperTotalBefore = totalSupply(e)

 ∧ underlyingTotalBefore = underlyingTotalSupply()

 ∧ underlyingThisBalanceBefore = underlyingBalanceOf(erc20wrapper)

}

 depositFor(account, amount)

{

 wrapperTotalAfter = totalSupply()

 ∧ underlyingTotalAfter = underlyingTotalSupply()

 ∧ underlyingThisBalanceAfter = underlyingBalanceOf(erc20wrapper)

 ∧ wrapperTotalBefore == wrapperTotalAfter - amount

∧ underlyingTotalBefore == underlyingTotalAfter

 ∧ underlyingThisBalanceBefore == underlyingThisBalanceAfter - amount

}

() depositForSpecWrapper

Check that values are updated correctly by depositFor() .

{

 underlyingContract ≠ erc20wrapper

 ∧ wrapperUserBalanceBefore = balanceOf(account)

 ∧ wrapperSenderBalanceBefore = balanceOf(msg.sender)

}

 depositFor(account, amount)

{

 wrapperUserBalanceAfter = balanceOf(account)

 ∧ wrapperSenderBalanceAfter = balanceOf(msg.sender)

 ∧ (account == msg.sender

 ⇒ (wrapperUserBalanceBefore == wrapperSenderBalanceBefore

 ∧ wrapperUserBalanceAfter == wrapperSenderBalanceAfter

 ∧ wrapperUserBalanceBefore == wrapperUserBalanceAfter - amount))

 ∧ (account ≠ msg.sender

 ⇒ (wrapperUserBalanceBefore == wrapperUserBalanceAfter - amount

 ∧ wrapperSenderBalanceBefore == wrapperSenderBalanceAfter))

}

() depositForSpecUnderlying

Check that values are updated correctly by depositFor() .

{

 msg.sender ≠ erc20wrapper

 ∧ underlyingContract ≠ erc20wrapper

 ∧ underlyingSenderBalanceBefore = underlyingBalanceOf(msg.sender)

 ∧ underlyingUserBalanceBefore = underlyingBalanceOf(account)

}

 depositFor(account, amount)

{

 underlyingSenderBalanceAfter = underlyingBalanceOf(msg.sender)

 ∧ underlyingUserBalanceAfter = underlyingBalanceOf(account)

 ∧ (account == msg.sender

 ⇒ (underlyingSenderBalanceBefore == underlyingUserBalanceBefore

 ∧ underlyingSenderBalanceAfter == underlyingUserBalanceAfter

 ∧ underlyingSenderBalanceBefore == underlyingSenderBalanceAfter + amount))

 ∧ (account ≠ msg.sender ∧ account == erc20wrapper

 ⇒ (underlyingSenderBalanceBefore == underlyingSenderBalanceAfter + amount

 ∧ underlyingUserBalanceBefore == underlyingUserBalanceAfter - amount))

 ∧ (account ≠ msg.sender ∧ account ≠ erc20wrapper

 ⇒ (underlyingSenderBalanceBefore == underlyingSenderBalanceAfter + amount

 ∧ underlyingUserBalanceBefore == underlyingUserBalanceAfter))

}

() withdrawToSpecBasic

Check that values are updated correctly by withdrawTo() .

{

 underlyingContract ≠ erc20wrapper

 ∧ wrapperTotalBefore = totalSupply()

 ∧ underlyingTotalBefore = underlyingTotalSupply()

}

 withdrawTo(account, amount)

{

 wrapperTotalAfter = totalSupply()

 ∧ underlyingTotalAfter = underlyingTotalSupply()

 ∧ wrapperTotalBefore == wrapperTotalAfter + amount

 ∧ underlyingTotalBefore == underlyingTotalAfter

}

() withdrawToSpecWrapper

Check that values are updated correctly by withdrawTo() .

{

 underlyingContract ≠ erc20wrapper

 ∧ wrapperUserBalanceBefore = balanceOf(account)

 ∧ wrapperSenderBalanceBefore = balanceOf(msg.sender)

}

 withdrawTo(account, amount)

{

 wrapperUserBalanceAfter = balanceOf(account)

 ∧ wrapperSenderBalanceAfter = balanceOf(msg.sender)

 ∧ (account == msg.sender

 ⇒ (wrapperUserBalanceBefore == wrapperSenderBalanceBefore

 ∧ wrapperUserBalanceAfter == wrapperSenderBalanceAfter

 ∧ wrapperUserBalanceBefore == wrapperUserBalanceAfter + amount))

 ∧ (account ≠ msg.sender

 ⇒ (wrapperSenderBalanceBefore == wrapperSenderBalanceAfter + amount

 ∧ wrapperUserBalanceBefore == wrapperUserBalanceAfter))

}

() depositForSpecUnderlying

Check that values are updated correctly by depositFor() .

{

 msg.sender ≠ erc20wrapper

 ∧ underlyingContract ≠ erc20wrapper

 ∧ underlyingSenderBalanceBefore = underlyingBalanceOf(msg.sender)

 ∧ underlyingUserBalanceBefore = underlyingBalanceOf(account)

 ∧ underlyingThisBalanceBefore = underlyingBalanceOf(erc20wrapper)

}

 withdrawTo(account, amount)

{

 underlyingSenderBalanceAfter = underlyingBalanceOf(msg.sender)

 ∧ underlyingUserBalanceAfter = underlyingBalanceOf(account)

 ∧ underlyingThisBalanceAfter = underlyingBalanceOf(erc20wrapper)

 ∧ (account == e.msg.sender

 ⇒ (underlyingSenderBalanceBefore == underlyingUserBalanceBefore

 ∧ underlyingSenderBalanceAfter == underlyingUserBalanceAfter

 ∧ underlyingUserBalanceBefore == underlyingUserBalanceAfter - amount))

 ∧ (account ≠ e.msg.sender ∧ account == erc20wrapper

 ⇒ (underlyingUserBalanceBefore == underlyingUserBalanceAfter

 ∧ underlyingSenderBalanceBefore == underlyingSenderBalanceAfter))

 ∧ (account ≠ e.msg.sender ∧ account ≠ erc20wrapper

 ⇒ (underlyingUserBalanceBefore == underlyingUserBalanceAfter - amount

 ∧ underlyingSenderBalanceBefore == underlyingSenderBalanceAfter

 ∧ underlyingThisBalanceBefore == underlyingThisBalanceAfter + amount))

}

() recoverSpec

Check that values are updated correctly by _recover() .

{

 wrapperTotalBefore = totalSupply()

 ∧ wrapperUserBalanceBefore = balanceOf(account)

 ∧ wrapperSenderBalanceBefore = balanceOf(msg.sender)

}

 _recover(account)

{

 wrapperTotalAfter = totalSupply()

 ∧ wrapperUserBalanceAfter = balanceOf(account)

 ∧ wrapperSenderBalanceAfter = balanceOf(msg.sender)

 ∧ wrapperTotalBefore == wrapperTotalAfter - value

 ∧ (msg.sender == account

 ⇒ (wrapperUserBalanceBefore == wrapperSenderBalanceBefore

 ∧ wrapperUserBalanceAfter == wrapperSenderBalanceAfter

 ∧ wrapperUserBalanceBefore == wrapperUserBalanceAfter - value))

 ∧ (msg.sender ≠ account

 ⇒ (wrapperUserBalanceBefore == wrapperUserBalanceAfter - value

 ∧ wrapperSenderBalanceBefore == wrapperSenderBalanceAfter))

}

Verification of TimelockController.sol

Summary

TimelockController is a contract module that is used to apply a timelock for operations,

e.g. some time should pass before operation will be executed, thus users will have time to

exit in case if they suspect something.

Assumptions and simplifications for verification

• We unroll loops. Violations that require a loop to execute more than three times will

not be detected.

Properties

() operationCheck

isOperation() correctness check.

getTimestamp(id) > 0 ⇔ isOperation(id)

() pendingCheck

isOperationPending() correctness check.

getTimestamp(id) > _DONE_TIMESTAMP() ⇔ isOperationPending(id)

() readyCheck

isOperationReady() correctness check.

(block.timestamp ≥ getTimestamp(id) ∧ getTimestamp(id) > 1)

 ⇔ isOperationReady(eid)

() doneCheck

isOperation() correctness check.

getTimestamp(id) == _DONE_TIMESTAMP() ⇔ isOperationDone(id)

() unsetPendingTransitionGeneral

Possible transitions: from unset to unset or pending only.

{

 ¬isOperation(id)

}

 < call to any function f >

{

 isOperationPending(id) v ¬isOperation(id)

}

() unsetPendingTransitionMethods

Possible transitions: from unset to pending via schedule() and scheduleBatch()

only.

{

 ¬isOperation(id)

}

 < call to any function f >

{

 isOperationPending(id) ⇒ (f == schedule() v f == scheduleBatch())

}

() readyDoneTransition

Possible transitions: from ready to done via execute() and executeBatch() only.

{

 isOperationReady(id)

}

 < call to any function f >

{

 isOperationDone(id) ⇒ (f == execute() v f == executeBatch())

}

() pendingCancelledTransition

Possible transitions: from pending to cancelled via cancel() only.

{

 isOperationPending(id)

}

 < call to any function f >

{

 ¬isOperation(id) ⇒ f == cancel()

}

() doneToNothingTransition

Possible transitions: form done to done (once an operation is done, it remains done)

only.

{

 isOperationDone(id)

}

 < call to any function f >

{

 isOperationDone(id)

}

() minDelayOnlyChange

Only TimelockController contract can change _minDelay() .

{

 delayBefore = _minDelay()

}

 < call to any function f >

{

 delayAfter = _minDelay()

 ∧ delayBefore ≠ delayAfter

 ⇒ e.msg.sender == TimelockController

}

() scheduleCheck

Scheduled operation’s timestamp == block.timestamp + delay .

{ }

 schedule(target, value, data, predecessor, salt, delay)

{

 getTimestamp(id) == block.timestamp + delay

}

() cannotCallExecute

Cannot call execute() on a pending (not ready) operation.

{

 isOperationPending(id) ∧ ¬isOperationReady(id)

}

 execute@withrevert(target, value, data, predecessor, salt)

{

 lastReverted

}

() executeRevertsFromUnset

Cannot call execute() on an unset operation.

{

 ¬isOperation(id)

}

 execute@withrevert(target, value, data, predecessor, salt)

{

 lastReverted

}

() cancelledNotExecuted

Canceled operations cannot be executed → can’t move from canceled to done.

{

 ¬isOperation(id)

}

 < call to any function f >

{

 ¬isOperationDone(id)

}

() onlyProposer

Only proposer can schedule.

[1]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1

{

 f == schedule() v scheduleBatch()

}

 isCheckRoleReverted = _checkRole@withrevert(PROPOSER_ROLE());

 isScheduleReverted = < call to any function f >;

{

 isCheckRoleReverted ⇒ isScheduleReverted

}

() cooldown

If ready then has waited minimum period after was set to pending.

{

 minDelay = getMinDelay()

}

 schedule(e, target, value, data, predecessor, salt, delay);

 < call to any function f in environment e>

{

 isOperationReady(e2, id) ⇒

 (e2.block.timestamp - e.block.timestamp ≥ minDelay)

}

() scheduleChange

schedule() should change only one id’s timestamp.

{

 otherIdTimestampBefore = getTimestamp(otherId)

}

 schedule(target, value, data, predecessor, salt, delay) for id

{

 id ≠ otherId ⇒ otherIdTimestampBefore == getTimestamp(otherId)

}

() executeChange

execute() should change only one id’s timestamp.

{

 otherIdTimestampBefore = getTimestamp(otherId)

}

 execute(target, value, data, predecessor, salt) for id

{

 id ≠ otherId ⇒ otherIdTimestampBefore == getTimestamp(otherId)

}

() cancelChange

[2]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn2

cancel() should change only one id’s timestamp.

{

 otherIdTimestampBefore = getTimestamp(otherId)

}

 cancel(id)

{

 id ≠ otherId ⇒ otherIdTimestampBefore == getTimestamp(otherId)

}

Verification of ERC20Votes.sol

Summary

This contract is an extension for OpenZeppelin’s implementation of the ERC20 protocol.

This extension handles the distribution of voting power based on a user’s owned tokens.

This power may be delegated to others or to one’s own account. Notably this contract

handles only the holding of votes, and not the use of them, which is left up to users of the

contract.

Assumptions and simplifications for verification

• The DelegateBySig function was removed during verification due to a tool failure, to

be fixed at a later date

• The MoveVotingPower function was altered to no longer use function pointers due to

incompatability with the tool, the logic was left unchanged and it is assumed no bugs

were introduced or removed with this change

• It is assumed for most rules that the number of checkpoints does not exceed one

million, a very high number, but notably below the amount to overflow. Overflow of

checkpoints can happen, however it is assumed the application will not run for the

millenia needed for this to occur.

Definitions

fromBlock block.number stored for a given checkpoint

Properties

() votes_solvency

Enough votes are in the system to supply votes for each user

 totalSupply() > ∑getVotes(user)

• We do not directly call getVotes(user), but instead update an auxillary value

whenever the votes are updated

() blockNum_constrains_fromBlock

For any given fromBlock of a checkpoint, it is less than or equal to the block number

of the operation reading/writing the checkpoint

 ckptFromBlock(account, index) < e.block.number

• It is assumed index is within the bounds of checkpoints

() fromBlock_constrains_numBlocks

The number of checkpoints for a current account is less than the latest fromBlock

 numCheckpoints(account) ≤ ckptFromBlock(account, numCheckpoints(account) - 1)

() fromBlock_greaterThanEq_pos

For any given checkpoint of an account, its fromBlock is greater than its index in the

array

 ckptFromBlock(account, pos) ≥ pos

() fromBlock_increasing

for any two given checkpoints of an account, the one with the larger index will also

have the larger fromBlock

 index1 > index2 ⇒ ckptFromBlock(account, index1) > ckptFromBlock(account, index2)

• The index must correspond to a valid checkpoint

() maxInt_constrains_ckptsLength

The number of checkpoints for a given account may not overflow (maximum of 2^32)

 unsafeNumCheckpoints(account) < 4294967295

• It is noted in the assumptions above that while this fails, the time it would take for

the checkpoints to overflow is unrealistic. This is true if the condition that only

one checkpoint per block is held for a given account, which is shown through the

above invariants. The following rule ‘unique_checkpoints_rule’ shows this

property in a different way.

() unique_checkpoints_rule

If the last fromBlock recorded for an account does not change accross any function,

neither can the number of checkpoints

 {

 num_ckpts_ = numCheckpoints(account);

 fromBlock_ = num_ckpts_ == 0 ? 0 : ckptFromBlock(account, num_ckpts_ - 1)

 }

 <arbitrary function f>

 {

 _num_ckpts = numCheckpoints(account);

 _fromBlock = _num_ckpts == 0 ? 0 : ckptFromBlock(account, _num_ckpts - 1)

 fromBlock_ == _fromBlock ⇒ num_ckpts_ == _num_ckpts v _num_ckpts == 1

 }

() transfer_safe()

transfer may not alter the total number of votes and properly transfers the same

amount of votes as token transfered from the sender’s delegate to the receiver’s

 {

 delegator_pre = getVotes(delegates(delegator))

 delegatee_pre = getVotes(delegates(delegatee))

 totalVotes_pre = totalVotes()

 }

 transferFrom(delegator, delegatee, amount)

 {

 totalVotes_post = totalVotes()

 delegator_post = getVotes(delegates(delegator))

 delegatee_post = getVotes(delegates(delegatee))

 totalVotes_pre == totalVotes_post

 delegates(delegator) ≠ 0 ⇒ delegator_pre - delegator_post == amount

 delegates(delegatee) ≠ 0 ⇒ delegatee_post - delegatee_pre == amount

 }

() delegates_safe

functions other than the variations of delegate() may not change the stored

delegate for a given account

 {

 pre = delegates(account)

 }

 <arbitrary function f> // other than delegate()

 {

 post = delegates(account)

 pre == post

 }

() delegatee_receives_votes

When delegating, the delegatee always receives the votes equal to the token balance

of the delegator

 {

 delegator_bal = balanceOf(delegator)

 votes_= getVotes(delegatee)

 }

 delegate(delegator, delegatee)

 {

 _votes = getVotes(delegatee)

 votes == votes + delegator_bal

 }

• Assumes the delegator has not already delegated to the delegatee

() previous_delegatee_votes_removed

When delegate is called, the account previously delegated to, denoted as third ,

loses votes equal to the token balance of the delegator. This may be one’s own

account

 {

 delegator_bal = balanceOf(delegator)

 uint256 votes_ = getVotes(third)

 }

 delegate(delegator, delegatee);

 {

 _votes = getVotes(third)

 third ≠ 0x0 ⇒ _votes == votes_ - delegator_bal

 }

() delegate_contained

Calling delegate will only affect the accounts of the delegator, delegatee, and (if

applicable) the account of the previous delegatee.

 {

 votes_ = getVotes(other)

 }

 delegate(delegator, delegatee)

 {

 _votes = getVotes(other)

 votes_ == _votes

 }

• the arbitrary account other is set to be none of the delegator, delegatee, or delegatee

before the function call

() delegate_no_frontrunning

The above properties: delegate_contained , previous_delegatee_votes_removed ,

and delegatee_receives_votes still pass after an arbitrary function has been called

 < arbitrary function f>

 {

 delegator_bal = balanceOf(delegator)

 delegatee_votes_ = getVotes(delegatee)

 third_votes_ = getVotes(third)

 other_votes_ = getVotes(other)

 }

 delegate(delegator, delegatee)

 {

 _delegatee_votes = getVotes(delegatee)

 _third_votes = getVotes(third)

 _other_votes = getVotes(other)

 _delegatee_votes == delegatee_votes_ + delegator_bal

 third ≠ 0 ⇒ _third_votes == third_votes_ - delegator_bal

 other_votes_ == _other_votes

 }

() mint_increases_totalSupply

Calling mint increases the total supply of token and the last total is saved properly in

the _totalSupplyCheckpoints

 {

 totalSupply_ = totalSupply()

 }

 mint(account, amount)

 {

 _totalSupply = totalSupply()

 totalSupply == totalSupply + amount

 getPastTotalSupply(fromBlock) == totalSupply_

 }

() burn_decreases_totalSupply

Calling burn decreasees the total supply of token and properly saves the last total in

the _totalSupplyCheckpoints

 {

 totalSupply_ = totalSupply()

 }

 burn(account, amount)

 {

 _totalSupply = totalSupply()

 totalSupply == totalSupply - amount

 }

() mint_doesnt_increase_totalVotes

Calling mint does not change the sum of all votes held

 {

 pre = ∑getVotes(user)

 }

 mint(account, ammount)

 {

 post = ∑getVotes(user)

 pre == post

 }

() burn_doesnt_decrease_totalVotes

Calling burn does not change the sum of all votes held

 {

 pre = ∑getVotes(user)

 }

 burn (account, ammount)

 {

 post = ∑getVotes(user)

 pre == post

 }

Verification of draft-ERC721Votes.sol and Votes.sol

Summary

draft-ERC721Votes.sol is functionally quite analogous to erc20Votes and most rules and

invariants were kept the same, however some rules and simplifications were adjusted

based on the implimentation and differences of the ERC721 protocol.

Assumptions and simplifications for verification

Similar to ERC20 Votes, delegateBySig was removed, MovingDelegateVotes was split to

remove function pointers, and number of checkpoints was capped to one million.

Additionally, a mapping of users to their last checkpoint was added to assit with some

rules, which uses the vote returned from calling push to Checkpoints.History, and the

current block number. This change was due to the tool not being able to access

information from within a nested struct in an external contract, and is assumed to be

equivalent information.

Properties

() votes_solvency

Enough votes are in the system to supply votes for each user

 totalSupply() > ∑getVotes(user)

• Instead of calling getVotes(user) a hook is used, we assume this information

to be equivalent

() blockNum_constrains_fromBlock

For any given fromBlock of a checkpoint, it is less than the current block number.

Essentially no future blocks can be set

 ckptFromBlock(account, index) < e.block.number

• It is assumed index is within the bounds of checkpoints

() fromBlock_constrains_numBlocks

The number of checkpoints for a current account is less than the latest fromBlock

 numCheckpoints(account) ≤ ckptFromBlock(account, numCheckpoints(account) - 1)

() fromBlock_greaterThanEq_pos

For any given checkpoint of an account, its fromBlock is greater than its index in the

array

 ckptFromBlock(account, pos) ≥ pos

() fromBlock_increasing

for any two given checkpoints of an account, the one with the larger index will also

have the larger fromBlock

 index1 > index2 ⇒ ckptFromBlock(account, index1) > ckptFromBlock(account, index2)

• The index must correspond to a valid checkpoint

() maxInt_constrains_ckptsLength

The number of checkpoints for a given account may not overflow (maximum of 2^32)

 unsafeNumCheckpoints(account) < 4294967295

• It is noted in the assumptions above that while this fails, the timeperiod it would

take for the checkpoints to overflow is unrealistic. This is true if the condition that

only one checkpoint per block is held for a given account, which is shown

through the above invariants. The following rule also attempts to show this

() unique_checkpoints_rule

If the last fromBlock recorded for an account does not change across any function,

neither can the number of checkpoints

 {

 num_ckpts_ = numCheckpoints(account);

 fromBlock_ = num_ckpts_ == 0 ? 0 : ckptFromBlock(account, num_ckpts_ - 1)

 }

 <arbitrary function f>

 {

 _num_ckpts = numCheckpoints(account);

 _fromBlock = _num_ckpts == 0 ? 0 : ckptFromBlock(account, _num_ckpts - 1)

 fromBlock_ == _fromBlock ⇒ num_ckpts_ == _num_ckpts v _num_ckpts == 1

 }

() transfer_safe()

transfer may not alter the total numer of votes and properly transfers the same

amount of votes as token transfereed from the sender’s delegate to the receiver’s

 {

 delegator_pre = getVotes(delegates(delegator))

 delegatee_pre = getVotes(delegates(delegatee))

 totalVotes_pre = totalVotes()

 }

 transferFrom(delegator, delegatee, amount)

 {

 totalVotes_post = totalVotes()

 delegator_post = getVotes(delegates(delegator))

 delegatee_post = getVotes(deleegates(delegatee))

 totalVotes_pre == totalVotes_post

 delegates(a) ≠ 0 => votesA_pre - 1 == votesA_post

 delegates(b) ≠ 0 => votesB_pre + 1 == votesB_post

 }

() delegates_safe

functions other than delegate may not change the stored delegate for a given account

 {

 pre = delegates(account)

 }

 <arbitrary function f>

 {

 post = delegates(account)

 pre == post

 }

() delegatee_receives_votes

When delegating, the delegatee always receives the votes equal to the token balance

of the delegator

 {

 delegator_bal = balanceOf(delegator)

 votes_= getVotes(delegatee)

 }

 delegate(delegator, delegatee)

 {

 _votes = getVotes(delegatee)

 votes == votes + delegator_bal

 }

• Assumes the delegator has not already delegated to the delegatee

() previous_delegatee_votes_removed

The account previously delegated to, denoted as third , loses votes equal to the

token balance of the delegator. This may be one’s own account

 {

 delegator_bal = balanceOf(delegator)

 uint256 votes_ = getVotes(third)

 }

 delegate(delegator, delegatee);

 {

 _votes = getVotes(third)

 third ≠ 0x0 ⇒ _votes == votes_ - delegator_bal

 }

() delegate_contained

Calling delegate will only affect the accounts of the delegator, delegatee, and (if

applicable) the account of the previous delegatee.

 {

 votes_ = getVotes(other)

 }

 delegate(delegator, delegatee)

 {

 _votes = getVotes(other)

 votes_ == _votes

 }

• the arbitrary account other is set to be none of the delegator, delegatee, or delegatee

before the function call

() delegate_no_frontrunning

The above properties: delegate_contained , previous_delegatee_votes_removed ,

and delegatee_receives_votes still pass after an arbitrary function has been called

 < arbitrary function f>

 {

 delegator_bal = balanceOf(delegator)

 delegatee_votes_ = getVotes(delegatee)

 third_votes_ = getVotes(third)

 other_votes_ = getVotes(other)

 }

 delegate(delegator, delegatee)

 {

 _delegatee_votes = getVotes(delegatee)

 _third_votes = getVotes(third)

 _other_votes = getVotes(other)

 _delegatee_votes == delegatee_votes_ + delegator_bal

 third ≠ 0 ⇒ _third_votes == third_votes_ - delegator_bal

 other_votes_ == _other_votes

Verification of AccessControl.sol

Summary

AccessControl is a contract module that is used to support access control mechanisms.

Access control is based on defined roles (role-based), e.g. users with specific roles can

only do specific operations.

Assumptions and simplifications for verification

• We unroll loops. Violations that require a loop to execute more than once will not be

detected.

Properties

() onlyRoleModifierCheckGrant

If onlyRole modifier reverts then grantRole() reverts.

{

}

 checkRevert = _checkRole@withrevert(getRoleAdmin(role));

 grantRevert = grantRole@withrevert(role, account);

{

 checkRevert ⇒ grantRevert

}

() onlyRoleModifierCheckRevoke

If onlyRole modifier reverts then revokeRole() reverts.

{

}

 checkRevert = _checkRole@withrevert(getRoleAdmin(role));

 revokeRevert = revokeRole@withrevert(role, account);

{

 checkRevert ⇒ revokeRevert

}

() grantRoleEffect

grantRole() does not affect any other account.

{

 account ≠ nonEffectedAcc

 ∧ hasRoleBefore = hasRole(anotherRole, nonEffectedAcc)

}

 grantRole(role, account)

{

 hasRoleAfter = hasRole(anotherRole, nonEffectedAcc)

 ∧ hasRoleBefore == hasRoleAfter

}

() revokeRoleEffect

revokeRole() does not affect any other account.

[1:1]

[1:2]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn1

{

 account ≠ nonEffectedAcc

 ∧ hasRoleBefore = hasRole(anotherRole, nonEffectedAcc)

}

 revokeRole(role, account)

{

 hasRoleAfter = hasRole(anotherRole, nonEffectedAcc)

 ∧ hasRoleBefore == hasRoleAfter

}

Verification of ERC1155.sol

Summary

ERC1155 is the token contract that can represent fungible and non-fungible token types.

It’s based on the EIP-1155.

Assumptions and simplifications for verification

• We unroll loops. Violations that require a loop to execute more than three times will

not be detected.

• For batch version of functions we assume that arrays have length of 3 because we

unroll loops three times, thus, we won’t reach 4th elemnt of an array.

• balanceOfBatch() wasn’t verified/used because of tool limitations.

Properties

Approval

() unexpectedAllowanceChange

Any function, which is not setApprovalForAll() , should not change approval.

{

 approveBefore = isApprovedForAll(account, operator)

}

 < call to any function f except setApprovalForAll()>

{

 approveAfter = isApprovedForAll(account, operator)

 ∧ approveBefore == approveAfter

}

() onlyOwnerCanApprove

Approval can be changed only by owner.

https://eips.ethereum.org/EIPS/eip-115
https://eips.ethereum.org/EIPS/eip-115
https://eips.ethereum.org/EIPS/eip-115

{

 aprovalBefore = isApprovedForAll(owner, operator)

}

 setApprovalForAll(operator, approved)

{

 aprovalAfter = isApprovedForAll(owner, operator)

 ∧ (aprovalBefore ≠ aprovalAfter ⇒ owner == msg.sender)

}

() approvalRevertCases

Chech that isApprovedForAll() reverts in planned scenarios and no more

(shouldn’t revert at all).

{

}

 isApprovedForAll@withrevert(account, operator)

{

 ¬lastReverted

}

() onlyOneAllowanceChange

setApprovalForAll() changes only one approval.

{

 userApproveBefore = isApprovedForAll(owner, user)

}

 setApprovalForAll(operator, approved)

{

 aprovalAfter = isApprovedForAll(owner, user)

 ∧ (userApproveBefore ≠ userApproveAfter

 ⇒ (e.msg.sender == owner ∧ operator == user))

}

Balance

() unexpectedBalanceChange

Any function, which is not one of transfers, mints and burns, should not change

balanceOf of a user.

{

 balanceBefore = balanceOf(from, id)

}

 < call to any function f except transfers, burns and mints>

{

 balanceAfter = balanceOf(from, id)

 ∧ balanceBefore == balanceAfter

}

() balanceOfRevertCases

Check that balanceOf() reverts in planned scenarios (only if account is 0).

{

}

 balanceOf@withrevert(account, id)

{

 lastReverted ⇒ account == 0

}

() balanceOfBatchRevertCases

Check that balanceOfBatch() reverts in planned scenarios (only if at least one of

account s is 0).

{

 accounts[0] == account1

 ∧ accounts[1] == account2

 ∧ accounts[2] == account3

}

 balanceOfBatch@withrevert(accounts, ids)

{

 lastReverted ⇒

 (account1 == 0 v account2 == 0 v account3 == 0)

}

Transfer

() transferAdditivity

Additivity of safeTransferFrom() : safeTransferFrom(a) ; safeTransferFrom(b)

has same effect as safeTransferFrom(a+b) .

 amount == amount1 + amount2 ∧

 safeTransferFrom(from, to, id, amount, data) ~ safeTransferFrom(from, to, id, amount1,

 Equivalent with respect to the balanceOf(from, id)

[3]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn3
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn3

() transferCorrectness

safeTransferFrom() updates from and to balances correctly.

{

 to ≠ from

 ∧ fromBalanceBefore = balanceOf(from, id)

 ∧ toBalanceBefore = balanceOf(to, id)

}

 safeTransferFrom(from, to, id, amount, data)

{

 fromBalanceAfter = balanceOf(from, id)

 ∧ toBalanceAfter = balanceOf(to, id)

 ∧ fromBalanceBefore == fromBalanceAfter + amount

 ∧ toBalanceBefore == toBalanceAfter - amount

}

() cannotTransferMoreSingle

safeTransferFrom() cannot transfer more than from ’s balance.

{

 balanceBefore = balanceOf(from, id)

}

 safeTransferFrom(from, to, id, amount, data)

{

 amount > balanceBefore ⇒ lastReverted

}

() transferBalanceReduceEffect

Sender calling safeTransferFrom() should only reduce from balance and not

others’ if sending amount is greater than 0.

{

 other ≠ to

 ∧ otherBalanceBefore = balanceOf(other, id)

}

 safeTransferFrom(from, to, id, amount, data)

{

 otherBalanceAfter = balanceOf(other, id)

 ∧ (from ≠ other

 ⇒ otherBalanceBefore == otherBalanceAfter)

}

() transferBalanceIncreaseEffect

Sender calling safeTransferFrom() should only reduce to balance and not others’

if sending amount is greater than 0.

[4]

[4:1]

[4:2]

[4:3]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4

{

 from ≠ other

 ∧ otherBalanceBefore = balanceOf(other, id)

}

 safeTransferFrom(from, to, id, amount, data)

{

 otherBalanceAfter = balanceOf(other, id)

 ∧ (other ≠ to

 ⇒ otherBalanceBefore == otherBalanceAfter)

}

() noTransferForNotApproved

Cannot transfer without approval(safeTransferFrom() version).

{

 from ≠ msg.sender

 ∧ approve = isApprovedForAll(from, msg.sender)

}

 safeTransferFrom@withrevert(from, to, id, amount, data)

{

 ¬approve ⇒ lastReverted

}

() noTransferEffectOnApproval

safeTransferFrom() doesn’t affect any approval.

{

 approveBefore = isApprovedForAll(owner, operator)

}

 safeTransferFrom(from, to, id, amount, data)

{

 approveAfter = isApprovedForAll(owner, operator)

 ∧ approveBefore == approveAfter

}

Mint

() mintAdditivity

Additivity of _mint() : _mint(a) ; _mint(b) has same effect as _mint(a+b) .

 amount == amount1 + amount2 ∧

 _mint(to, id, amount, data) ~ _mint(to, id, amount1, data); _mint(to, id, amount2, data

 Equivalent with respect to the balanceOf(from, id)

[4:4]

[4:5]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4

() mintRevertCases

Check that _mint() reverts in planned scenario(s) (only if to is 0).

{

}

 _mint@withrevert(to, id, amount, data)

{

 to == 0 ⇒ lastReverted

}

() mintBatchRevertCases

Check that _mintBatch() reverts in planned scenario(s) (only if to is 0 or arrays

have different length).

{

}

 _mintBatch@withrevert(to, ids, amounts, data)

{

 to == 0 v ids.length ≠ amounts.length ⇒ lastReverted

}

() mintCorrectWork

Check that _mint() updates to balance correctly.

{

 otherBalanceBefore = balanceOf(to, id)

}

 _mint(to, id, amount, data)

{

 otherBalanceAfter = balanceOf(to, id)

 ∧ otherBalanceBefore == otherBalanceAfter - amount

}

() cantMintMoreSingle

The user cannot _mint() more than max_uint256.

{

 balanceOf(to, id) + amount > max_uint256

}

 _mint@withrevert(to, id, amount, data)

{

 lastReverted

}

() cantMintOtherBalances

[4:6]

[4:7]

[4:8]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4

_mint() changes only to balance.

{

 otherBalanceBefore = balanceOf(other, id)

}

 _mint(to, id, amount, data)

{

 otherBalanceAfter = balanceOf(other, id)

 ∧ (other ≠ to ⇒ otherBalanceBefore == otherBalanceAfter)

}

Burn

() burnAdditivity

Additivity of _burn() : _burn(a) ; _burn(b) has same effect as _burn(a+b) .

 amount == amount1 + amount2 ∧

 _burn(from, id, amount) ~ _burn(from, id, amount1); _burn(from, id, amount2)

 Equivalent with respect to the balanceOf(from, id)

() burnRevertCases

Chech that _burn() revertes in planned scenario(s) (only if from is 0).

{

}

 _burn@withrevert(rom, id, amount)

{

 from == 0 ⇒ lastReverted

}

() burnBatchRevertCases

Chech that _burn() revertes in planned scenario(s) (only if from is 0 or arrays

have different length).

{

}

 _burnBatch@withrevert(from, ids, amounts)

{

 (from == 0 v ids.length ≠ amounts.length) ⇒ lastReverted

}

() burnCorrectWork

Check that _burn() updates from balance correctly.

[4:9]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4

{

 otherBalanceBefore = balanceOf(from, id)

}

 _burn(from, id, amount)

{

 otherBalanceAfter = balanceOf(from, id)

 ∧ otherBalanceBefore == otherBalanceAfter + amount

}

() cantBurnMoreSingle

The user cannot _burn() more than they have.

{

 balanceOf(from, id) - amount < 0

}

 _burn@withrevert(from, id, amount)

{

 lastReverted

}

() cantBurnOtherBalances

_burn() changes only from balance.

{

 otherBalanceBefore = balanceOf(other, id)

}

 _burn(from, id, amount)

{

 otherBalanceAfter = balanceOf(other, id)

 ∧ (other ≠ from ⇒ otherBalanceBefore == otherBalanceAfter)

}

1. in CVL we can retreive whether method reverted or not and save it in bool variable.

↩ ↩ ↩

2. We use several environments to represent different env settings, e.g.

block.timestamp for the same msg.sender, etc. More detailed: link ↩

3. There are only three accounts because we unroll loops three times, thus, there is no

need to add more accounts. ↩

[4:10]

[4:11]

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1:1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1:1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1:2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref1:2
https://docs.certora.com/en/latest/docs/ref-manual/cvl/types.html#the-env-type
https://docs.certora.com/en/latest/docs/ref-manual/cvl/types.html#the-env-type
https://docs.certora.com/en/latest/docs/ref-manual/cvl/types.html#the-env-type
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref3
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref3
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fn4

4. the same property was done for the batch version of the method. ↩ ↩ ↩ ↩ ↩ ↩ ↩

↩ ↩ ↩ ↩ ↩

file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:1
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:2
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:3
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:3
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:4
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:5
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:5
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:6
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:6
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:7
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:7
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:8
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:8
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:9
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:9
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:10
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:10
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:11
file:///tmp/cert/hackmd.io/@certora/H1aVZHzQc#fnref4:11

